Project description:Thermococcus gammatolerans, the most radioresistant archaeon known to date, is an anaerobic and hyperthermophilic sulfur-reducing organism living in deep-sea hydrothermal vents. Knowledge of mechanisms underlying archaeal metal tolerance in such metal-rich ecosystem is still poorly documented. We showed that T. gammatolerans exhibits high resistance to cadmium (Cd), cobalt (Co) and zinc (Zn), a weaker tolerance to nickel (Ni), copper (Cu) and arsenate (AsO(4)) and that cells exposed to 1 mM Cd exhibit a cellular Cd concentration of 67 µM. A time-dependent transcriptomic analysis using microarrays was performed at a non-toxic (100 µM) and a toxic (1 mM) Cd dose. The reliability of microarray data was strengthened by real time RT-PCR validations. Altogether, 114 Cd responsive genes were revealed and a substantial subset of genes is related to metal homeostasis, drug detoxification, re-oxidization of cofactors and ATP production. This first genome-wide expression profiling study of archaeal cells challenged with Cd showed that T. gammatolerans withstands induced stress through pathways observed in both prokaryotes and eukaryotes but also through new and original strategies. T. gammatolerans cells challenged with 1 mM Cd basically promote: 1) the induction of several transporter/permease encoding genes, probably to detoxify the cell; 2) the upregulation of Fe transporters encoding genes to likely compensate Cd damages in iron-containing proteins; 3) the induction of membrane-bound hydrogenase (Mbh) and membrane-bound hydrogenlyase (Mhy2) subunits encoding genes involved in recycling reduced cofactors and/or in proton translocation for energy production. By contrast to other organisms, redox homeostasis genes appear constitutively expressed and only a few genes encoding DNA repair proteins are regulated. We compared the expression of 27 Cd responsive genes in other stress conditions (Zn, Ni, heat shock, ?-rays), and showed that the Cd transcriptional pattern is comparable to other metal stress transcriptional responses (Cd, Zn, Ni) but not to a general stress response.
Project description:Thermococcus barophilus is a hyperthermophilic, anaerobic, mixed heterotrophic, and carboxydotrophic euryarchaeon isolated from the deep sea hydrothermal vent Snakepit site on the mid-Atlantic ridge at a depth of 3,550 m. T. barophilus is the first true piezophilic, hyperthermophilic archaeon isolated, having an optimal growth at 40 MPa. Here we report the complete genome sequence of strain MP, the type strain of T. barophilus. The genome data reveal a close proximity with Thermococcus sibiricus, another Thermococcus isolated from the deep biosphere and a possible connection to life in the depths.
Project description:Thermococcus sp. strain CL1 is a hyperthermophilic, anaerobic, and heterotrophic archaeon isolated from a Paralvinella sp. polychaete worm living on an active deep-sea hydrothermal sulfide chimney on the Cleft Segment of the Juan de Fuca Ridge. To further understand the distinct characteristics of this archaeon at the genome level, its genome was completely sequenced and analyzed. Here, we announce the complete genome sequence (1,950,313 bp) of Thermococcus sp. strain CL1, with a focus on H(2)- and energy-producing capabilities and its amino acid biosynthesis and acquisition in an extreme habitat.
Project description:The hyperthermophilic archaeon Thermococcus litoralis strain NS-C, first isolated in 1985, has been a foundational organism for archaeal research in biocatalysis, DNA replication, metabolism, and the discovery of inteins. Here, we present the genome sequence of T. litoralis with a focus on the replication machinery and inteins.
Project description:Thermococcus sp. strain 4557 is a hyperthermophilic anaerobic archaeon isolated from the deep-sea hydrothermal vent Guaymas Basin site in the Gulf of California at a depth of 2,000 m. Here, we present the complete genome sequence of Thermococcus sp. 4557, which consists of a single circular chromosome of 2,011,320 bp with a G+C content of 56.08%.
Project description:Prolidases are peptidases that are specific for dipeptides with proline as the second residue. The structure of recombinant prolidase from the hyperthermophilic archaeon Thermococcus sibiricus (Tsprol) was determined at 2.6?Å resolution. The homodimer of Tsprol is characterized by a complete lack of interactions between the N- and C-terminal domains of the two subunits and hence can be considered to be the most open structure when compared with previously structurally studied prolidases. This structure exists owing to intermolecular coordination bonds between cadmium ions derived from the crystallization solution and histidine residues of a His tag and aspartate and glutamate residues, which link the dimers to each other. This linking leads to the formation of a crystal with a loose packing of protein molecules and low resistance to mechanical influence and temperature increase.
Project description:Thermococcus onnurineus NA1 is an anaerobic archaeon usually found in a deep-sea hydrothermal vent area, which can use elemental sulfur (S0) as a terminal electron acceptor for energy. Sulfur, essential to many biomolecules such as sulfur-containing amino acids and cofactors including iron-sulfur cluster, is usually mobilized from cysteine by the pyridoxal 5'-phosphate- (PLP-) dependent enzyme of cysteine desulfurase (CDS). We determined the crystal structures of CDS from Thermococcus onnurineus NA1 (ToCDS), which include native internal aldimine (NAT), gem-diamine (GD) with alanine, internal aldimine structure with existing alanine (IAA), and internal aldimine with persulfide-bound Cys356 (PSF) structures. The catalytic intermediate structures showed the dihedral angle rotation of Schiff-base linkage relative to the PLP pyridine ring. The ToCDS structures were compared with bacterial CDS structures, which will help us to understand the role and catalytic mechanism of ToCDS in the archaeon Thermococcus onnurineus NA1.
Project description:Thermococcus nautili 30-1 (formerly Thermococcus nautilus), an anaerobic hyperthermophilic marine archaeon, was isolated in 1999 from a deep-sea hydrothermal vent during the Amistad campaign. Here, we present the complete sequence of T. nautili, which is able to produce membrane vesicles containing plasmid DNA. This property makes T. nautili a model organism to study horizontal gene transfer.
Project description:Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. strain NA1, revealed the presence of a 1,068-bp open reading frame encoding a protein consisting of 356 amino acids with a calculated molecular mass of 39,714 Da (GenBank accession no. DQ144132). Sequence analysis showed that it was similar to the putative aminopeptidase P (APP) of Thermococcus kodakaraensis KOD1. Amino acid residues important for catalytic activity and the metal binding ligands conserved in bacterial, nematode, insect, and mammalian APPs were also conserved in the Thermococcus sp. strain NA1 APP. The archaeal APP, designated TNA1_APP (Thermococcus sp. strain NA1 APP), was cloned and expressed in Escherichia coli. The recombinant enzyme hydrolyzed the amino-terminal Xaa-Pro bond of Lys(Nepsilon-Abz)-Pro-Pro-pNA and the dipeptide Met-Pro (Km, 0.96 mM), revealing its functional identity. Further enzyme characterization showed the enzyme to be a Co2+-, Mn2+-, or Zn2+-dependent metallopeptidase. Optimal APP activity with Met-Pro as the substrate occurred at pH 5 and a temperature of 100 degrees C. The APP was thermostable, with a half-life of >100 min at 80 degrees C. This study represents the first characterization of a hyperthermophilic archaeon APP.
Project description:Genome analysis revealed the existence of a putative transcriptional regulatory system governing CO metabolism in Thermococcus onnurineus NA1, a carboxydotrophic hydrogenogenic archaeon. The regulatory system is composed of CorQ with a 4-vinyl reductase domain and CorR with a DNA-binding domain of the LysR-type transcriptional regulator family in close proximity to the CO dehydrogenase (CODH) gene cluster. Homologous genes of the CorQR pair were also found in the genomes of Thermococcus species and "Candidatus Korarchaeum cryptofilum" OPF8. In-frame deletion of either corQ or corR caused a severe impairment in CO-dependent growth and H2 production. When corQ and corR deletion mutants were complemented by introducing the corQR genes under the control of a strong promoter, the mRNA and protein levels of the CODH gene were significantly increased in a ?CorR strain complemented with integrated corQR (?CorR/corQR(?)) compared with those in the wild-type strain. In addition, the ?CorR/corQR(?) strain exhibited a much higher H2 production rate (5.8-fold) than the wild-type strain in a bioreactor culture. The H2 production rate (191.9 mmol liter(-1) h(-1)) and the specific H2 production rate (249.6 mmol g(-1) h(-1)) of this strain were extremely high compared with those of CO-dependent H2-producing prokaryotes reported so far. These results suggest that the corQR genes encode a positive regulatory protein pair for the expression of a CODH gene cluster. The study also illustrates that manipulation of the transcriptional regulatory system can improve biological H2 production.