Project description:This SuperSeries is composed of the following subset Series: GSE36602: Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in rainbow trout ovarian follicles. GSE36603: Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in the xenopus ovarian follicles. GSE36604: Transcriptional profiling of cumulus cells differentiation throughout oocyte competence acquisition in the murine ovarian follicles. GSE36605: Transcriptional profiling of cumulus cells differentiation throughout oocyte competence acquisition in the bovine ovarian follicles. Refer to individual Series
Project description:Transcriptional profiling of cumulus cells differentiation throughout oocyte competence acquisition in the bovine ovarian follicles.
Project description:Cumulus cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from immature, unexpanded cumulus-oocytes complexes (COC) from prepubertal (3-week-old) mice, C1 samples from immature, unexpanded cumulus-oocytes complexes (COC) from adult (8-week-old) and C2 samples from mature, expanded COCs obtained from the oviduct from 8-week-old mice after standard superovulation protocol. Global transcriptional profiling was performed using cumulus cells collected from murine ovarian follicles during in vivo oocyte developmental competence acquisition. Cumulus cells were collected at 3 stages: early stage follicles (prophase I arrested oocytes, meiotically competent but developmentally incompetent, n=5), late stage follicles (prophase I arrested oocytes, meiotically competent and developmentally competent, n=5) and ovulatory follicles collected in vivo (metaphase II arrested oocytes, developmentally fully competent, n=5).
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 cumulus cells (CC) were sampled from immature calf oocytes, C1 samples from immature cow oocytes, and C2 samples from in vivo matured cow oocytes. Global transcriptional profiling was performed using cumulus cells collected from bovine ovarian follicles during in vivo oocyte developmental competence acquisition. Cumulus cells were collected at 3 stages: early stage follicles (prophase I arrested oocytes, meiotically competent but developmentally incompetent, n=6), late stage follicles (prophase I arrested oocytes, meiotically competent and developmentally competent, n=6) and ovulatory follicles collected by ovum pick-up (OPU) in vivo (metaphase II arrested oocytes, developmentally fully competent, n=5).
Project description:In vitro maturation (IVM) of the oocytes is a routine method in bovine embryo production. The competence of bovine oocytes to develop into embryo after IVM and in vitro fertilization (IVF) is lower as compared to in vivo preovulatory oocytes. Cumulus cells (CC) that enclose an oocyte are involved in the acquisition of oocyte quality during maturation. Using transcriptomic approach we compared cumulus cells gene expression during IVM with that in vivo preovulatory period. Global transcriptional profiling was performed using cumulus cells collected from mature bovine oocytes (metaphase-II stage) after maturation performed either in vivo or in vitro. In vivo matured cumulus cells were collected from ovulatory follicles of Montbeliard adult cows by ovum pick-up in vivo (OPU, n=4). In vitro matured cumulus cells were recovered from the oocytes after 22h of in vitro culture of cumulus-oocyte complexes (50 COC per experiment) from 2-6 mm ovarian follicles of adult cows (MIV, n=4). Gene expression analysis was carried out between in vivo and in vitro matured cumulus representing a total of 8 slides (dye swap protocol)
Project description:Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in the xenopus ovarian follicles.
Project description:This study investigated the cumulus cell (CC) transcriptomic changes during the oocyte developmental competence acquisition period.
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from immature stage IV follicles, C1 samples from immature stage VI follicles, and C2 samples from in vitro matured stage VI follicles. Global transcriptional profiling was performed using somatic cells collected from xenopus ovarian follicles during in vivo oocyte developmental competence acquisition. Somatic cells were collected at 3 stages of oogenesis: early stage follicles (stage IV, vitellogenic, prophase I arrested oocytes, meiotically competent but developmentally incompetent, n=5), late stage follicles (stage VI, post-vitellogenic, prophase I arrested oocytes, meiotically competent and developmentally competent, n=5) and ovulatory follicles collected after in vitro maturation induction with hCG of post-vitellogenic follicles (metaphase II arrested oocytes, developmentally fully competent, n=5).
Project description:Cumulus cells, surrounding the oocyte, play a key role in the acquisition of oocyte competence to be fertilized and to sustain early embryo development. Cumulus cells contribute to oocyte development by metabolizing energy substrates such as glutathione that may protect the oocyte from oxidative stress damages. The aim of our study was to compare transcriptomics profiles of cumulus enclosed (CEO) and cumulus denuded (CDO) oocytes after in vitro maturation.