Project description:For a long time, the BARD1 (BRCA1-associated RING domain 1) protein has been considered as a BRCA1 (BReast Cancer susceptibility gene 1, early onset) interactor, and tumor suppressor mutated in breast and ovarian cancers. Despite its functions in a stable heterodimer with BRCA1, there is increasing evidence for BRCA1-independent functions of BARD1. Here, we investigated BARD1 expression and function in human acute myeloid leukemias and their modulation by epigenetic mechanisms and microRNA. We show that the HDACi (histone deacetylase inhibitor) Vorinostat reduces BARD1 mRNA levels by increasing miR-19a and miR-19b expression levels. Moreover, we identify specific BARD1 isoforms that might act as tumor diagnostic and prognostic markers. Two-condition experiment: untreated NB4 cells (control) vs. NB4 cells treated with 5µM SAHA (Vorinostat) for 6h. Biological replicates: 3 control, 3 treated, independently grown and harvested at 6 hours. One replicate per array.
Project description:Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, a histone deacetylase inhibitor, vorinostat (SAHA), and a hsp90 inhibitor, 17-AAG, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide, vorinostat (SAHA) or 17-AAG, alone or in paired combination, was employed to determine the molecular mechanisms underlying these synergistic interactions. We used microarray analysis to determine the global molecular profile contributing to the synergistic cell death in LNCaP human prostate cancer cells caused by combinations of bicalutamide, vorinostat (SAHA), or 17-AAG. LNCaP human prostate cancer cells were treated for 6 hours with drug treatments as follows: vehicle control, 5 uM bicalutamide, 1 uM vorinostat (SAHA), 40 nM 17-AAG, 5 uM bicalutamide + 40 nM 17-AAG, 40 nM 17-AAG + 1 uM vorinostat (SAHA), or 5 uM bicalutamide + 1 uM vorinostat (SAHA). Each treatment was performed in sextuplicate.
Project description:Histone deacetylase inhibitors (HDACis) are a new class of compounds that induce acetylation of histone lysine tails in chromatin and modify gene expression. The Food & Drug Administration approved HDACi, Vorinostat, or suberoylanilide hydroxamic acid (SAHA), has been shown to inhibit tumor cell growth and the production of proinflammatory cytokines. In preclinical allogeneic transplant models, SAHA induces graft-versus-host disease (GVHD) amelioration in treated mice without impairing graft-versus-leukemia. LBH589 (Panobinostat), a structurally novel cinnamic hydroxamic acid class, is an HDACi more potent than SAHA. In the current work, we tested the hypothesis that LBH589 would be highly effective in the prevention of GVHD. Using mouse model of allogeneic bone marrow transplant (BMT), we unexpectedly found that treatment with LBH589 accelerated GVHD, in contrast to the treatment with SAHA that alleviated GVHD. Accelerated GVHD in the recipients treated with LBH589 was associated with elevated Th1 cytokines in recipient serum, enhanced CXCR3 expression on donor T cells, and T cell infiltration in the liver. The current study highlights the distinct effects of pan HDACi on allogeneic BMT and alerts that LBH589 (Panobinostat) could have an adverse effect on GVHD, and possibly on other inflammatory diseases.
Project description:When integrating molecularly targeted compounds in radiotherapy, synergistic effects of the systemic agent and radiation may extend the limits of patient tolerance, increasing the demand for understanding the pathophysiological mechanisms of treatment toxicity. In this Pelvic Radiation and Vorinostat (PRAVO) study, we investigated mechanisms of adverse effects in response to the histone deacetylase (HDAC) inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) when administered as a potential radiosensitiser.This phase I study for advanced gastrointestinal carcinoma was conducted in sequential patient cohorts exposed to escalating doses of vorinostat combined with standard-fractionated palliative radiotherapy to pelvic target volumes. Gene expression microarray analysis of the study patient peripheral blood mononuclear cells (PBMC) was followed by functional validation in cultured cell lines and mice treated with SAHA.PBMC transcriptional responses to vorinostat, including induction of apoptosis, were confined to the patient cohort reporting dose-limiting intestinal toxicities. At relevant SAHA concentrations, apoptotic features (annexin V staining and caspase 3/7 activation, but not poly-(ADP-ribose)-polymerase cleavage) were observed in cultured intestinal epithelial cells. Moreover, SAHA-treated mice displayed significant weight loss.The PRAVO study design implemented a strategy to explore treatment toxicity caused by an HDAC inhibitor when combined with radiotherapy and enabled the identification of apoptosis as a potential mechanism responsible for the dose-limiting effects of vorinostat. To the best of our knowledge, this is the first report deciphering mechanisms of normal tissue adverse effects in response to an HDAC inhibitor within a combined-modality treatment regimen.
Project description:Enhancer of zeste homolog 2 (EZH2) enhances tumorigenesis and is commonly overexpressed in several types of cancer. To investigate the anticancer effects of EZH2 inhibitors, microRNA (miRNA) expression profiles were examined in gastric and liver cancer cells treated with suberoylanilide hydroxamic acid (SAHA) and 3-deazaneplanocin A (DZNep). We confirmed that SAHA and DZNep suppressed EZH2 expression in AGS and HepG2 cells and inhibited their proliferation. The results of microarray analyses demonstrated that miR-1246 was commonly upregulated in cancer cells by treatment with SAHA and DZNep. MiR-302a and miR-4448 were markedly upregulated by treatment with SAHA and DZNep, respectively. DYRK1A, CDK2, BMI-1 and Girdin, which are targets of miR-1246, miR-302a and miR-4448, were suppressed by treatment with SAHA and DZNep, leading to apoptosis, cell cycle arrest and reduced migration of AGS and HepG2 cells. ChIP assay revealed that SAHA and DZNep inhibited the binding of EZH2 to the promoter regions of miR-1246, miR-302a and miR-4448. These findings suggest that EZH2 inhibitors such as SAHA and DZNep exert multiple anticancer effects through activation of tumor-suppressor miRNAs.
Project description:Reversal of proviral latency is being pursued as a curative strategy for HIV-1 infection. Recent clinical studies of in vivo administration of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA; vorinostat) show increases in unspliced cellular HIV-1 RNA levels in resting CD4(+) T cells. A critical unknown, however, is the proportion of latent proviruses that can be transcriptionally reactivated by SAHA or T-cell activation. In this study, we quantified the fraction of HIV-1 proviruses in resting CD4(+) T cells from patients on suppressive antiretroviral therapy that were reactivated ex vivo with SAHA or antibodies to CD3/CD28. At concentrations of SAHA achieved clinically, only 0.079% of proviruses in resting CD4(+) T cells were reactivated to produce virions, compared with 1.5% of proviruses in cells treated with anti-CD3/CD28 antibodies after correcting for spontaneous virion production in the medium control. A significant positive correlation (? = 0.67, P < 0.001) was found between levels of virions in the supernatant and unspliced cellular HIV-1 RNA following anti-CD3/CD28 treatment, but not following SAHA treatment (? = 0.21, P = 0.99). These results reveal that the majority of HIV-1 proviruses are not reactivated by current therapeutic approaches and that more effective means of reversing proviral latency will likely be required to deplete HIV-1 reservoirs.
Project description:We have investigated the effects of genistein on several prostate cancer cell lines, including the ARCaP-E/ARCaP-M model of the epithelial-to-mesenchymal transition (EMT), to analyze effects on their epigenetic state. In addition, we investigated the effects of combined treatment of genistein with the histone deacetylase inhibitor vorinostat on survival in prostate cancer cells. Using whole-genome expression profiling and whole-genome methylation profiling, we have determined the genome-wide differences in genetic and epigenetic responses to genistein in prostate cancer cells before and after undergoing the EMT. Also, cells were treated with genistein, vorinostat, and a combination treatment, where cell death and cell proliferation was determined. ARCaP-E and ARCaP-M cells were analyzed for whole genome expression using the Illumina HumanHT-12 Expression BeadChip. Samples were treated with DMSO control, genistein, vorinostat, a combination of vorinostat and genistein, or 5-aza-deoxycytidine. Samples were prepared in triplicate on independent days.
Project description:Hybrid anticancer drugs are of great therapeutic interests as they can potentially overcome the deficiencies of conventional chemotherapy drugs and improve the efficacy. Many studies have revealed that the combination of histone deacetylase inhibitors (HDACi) and alkylating agents have synergistic effects. We reported a novel hybrid NL-101, in which the side chain of bendamustine was replaced with the hydroxamic acid of HDACi vorinostat (SAHA). NL-101 exhibited efficient anti-proliferative activity on myeloid leukemia cells especially Kasumi-1 and NB4 cells, accompanied by S phase arrest and caspase-3 dependent apoptosis. Importantly, it presented both the properties of HDAC inhibition and DNA damaging, as assessed by the acetylation of histone H3 and DNA double-strand breaks marker ?-H2AX. NL-101 also down-regulated the expression of anti-apoptotic protein Bcl-xL which was involved in the mitochondrial death pathway. Meanwhile, NL-101 induced apoptosis and DNA damage in primary cells from acute myeloid leukemia (AML) patients. NL-101 treatment could significantly prolong the survival time of t(8;21) leukemia mice with enhanced efficacy than bendamustine. These data demonstrate that NL-101 could be a potent and selective agent for leukemia treatment.
Project description:Histone deacetylase 2 (HDAC2) is overexpressed or mutated in several disorders such as hematological cancers, and plays a critical role in transcriptional regulation, cell cycle progression and developmental processes. Here, we performed comparative transcriptome analyses in acute myeloid leukemia to investigate the biological implications of HDAC2 silencing versus its enzymatic inhibition using epigenetic-based drug(s). By gene expression analysis of HDAC2-silenced vs wild-type cells, we found that HDAC2 has a specific role in leukemogenesis. Gene expression profiling of U937 cell line with or without treatment of the well-known HDAC inhibitor vorinostat (SAHA) identifies and characterizes several gene clusters where inhibition of HDAC2 'mimics' its silencing, as well as those where HDAC2 is selectively and exclusively regulated by HDAC2 protein expression levels. These findings may represent an important tool for better understanding the mechanisms underpinning immune regulation, particularly in the study of major histocompatibility complex class II genes.
Project description:Natural killer (NK) large granular lymphocyte (LGL) leukaemia features a clonal proliferation of CD3(-) NK cells that can be classified into either aggressive or chronic categories. The NKL cell line, derived from an aggressive Asian NK cell leukaemia, and patient samples from chronic NK-LGL leukaemia were used in our study to probe for synergistic efficacy of the epigenetic drugs vorinostat (SAHA) and cladribine in this disease. We demonstrate that histone deacetylases (HDACs) are over-expressed in both aggressive and chronic NK leukaemia. Administration of the HDAC inhibitor SAHA reduces class I and II HDAC expression and enhances histone acetylation in leukaemic NK cells. In vitro combination treatment with SAHA and cladribine dose-dependently exerts synergistic cytotoxic and apoptotic effects on leukaemic NK cells. Expression profiling of apoptotic regulatory genes suggests that both compounds led to caspase-dependent apoptosis through activation of intrinsic mitochondrial and extrinsic death receptor pathways. Collectively, these data show that combined epigenetic therapy, using HDAC and DNA methyltransferase inhibitors, may be a promising therapeutic approach for NK-LGL leukaemia.