Project description:Clostridium perfringens (C. perfringens) is Gram-positive anaerobic, spore-forming rod-shaped bacterial pathogen that is widely distributed in nature. This bacterium is known as the causative agent of a foodborne illness and of gas gangrene. While the major virulence factors are the ?-toxin and perfringolysin O (PFO) produced by type A strains of C. perfringens, the precise mechanisms of how these toxins induce the development of gas gangrene are still not well understood. In this study, we analyzed the host responses to these toxins, including inflammasome activation, using mouse bone marrow-derived macrophages (BMDMs). Our results demonstrated, for the first time, that C. perfringens triggers the activation of caspase-1 and release of IL-1? through PFO-mediated inflammasome activation via a receptor of the Nod-like receptor (NLR) family, pyrin-domain containing 3 protein (NLRP3). The PFO-mediated inflammasome activation was not induced in the cultured myocytes. We further analyzed the functional roles of the toxins in inducing myonecrosis in a mouse model of gas gangrene. Although the myonecrosis was found to be largely dependent on the ?-toxin, PFO also induced myonecrosis to a lesser extent, again through the mediation of NLRP3. These results suggest that C. perfringens triggers inflammatory responses via PFO-mediated inflammasome activation via NLRP3, and that this axis contributes in part to the progression of gas gangrene. Our findings provide a novel insight into the molecular mechanisms underlying the pathogenesis of gas gangrene caused by C. perfringens.
Project description:Clostridium perfringens (C. perfringens) type A strains are the main cause of gas gangrene in humans and animals. Treatment of this lethal disease is limited, and the prognosis is not good. Alpha-toxin (CPA) and perfringolysin O (PFO) secreted by C. perfringens play irreplaceable roles in cytotoxicity to host cells, persistence in host tissues, and lethality of gas gangrene pathology. This work determined the influence of amentoflavone, a biflavonoid isolated from Selaginella tamariscina and other plants, on hemolysis and cytotoxicity mediated by CPA and PFO and evaluated the in vivo therapeutic effect on gas gangrene. Our data showed that amentoflavone could block the hemolysis and cytotoxicity induced by CPA and PFO in vitro, thereby mediating significant protection against mortality of infected mice in a mouse gas gangrene model, efficient bacterial clearance in tissues and alleviation of histological damage in vivo. Based on the above results, amentoflavone may be a potential candidate against C. perfringens infection by reducing CPA and PFO-mediated virulence.
Project description:Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens alpha-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (theta-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the alpha-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum alpha-toxin. Together, these data indicate that as a result of its ability to produce alpha-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of clostridial myonecrosis, irrespective of the causative bacterium.
Project description:Clostridium perfringens alpha-toxin is a key mediator of gas gangrene, which is a life-threatening infection that manifests as fever, pain, edema, myonecrosis, and gas production. Alpha-toxin possesses phospholipase C and sphingomyelinase activities. The toxin is composed of an N-terminal domain (1-250 aa, N-domain), which is the catalytic site, and a C-terminal domain (251-370 aa, C-domain), which is the membrane-binding site. Immunization of mice with the C-domain of alpha-toxin prevents the gas gangrene caused by C. perfringens, whereas immunization with the N-domain has no effect. The central loop domain (55-93 aa), especially H….SW(84)Y(85)….G, plays an important role in the interaction with ganglioside GM1a. The toxin binds to lipid rafts in the presence of a GM1a/TrkA complex, and metabolites from phosphatidylcholine to diacylglycerol through the enzymatic activity of alpha-toxin itself. These membrane dynamics leads to the activation of endogenous PLCγ-1 via TrkA. In addition, treatment with alpha-toxin leads to the formation of diacylglycerol at membrane rafts in ganglioside-deficient DonQ cells; this in turn triggers endocytosis and cell death. This article summarizes the current the membrane-binding mechanism of alpha-toxin in detail.