Project description:Dendritic cells (DC) licensed by the interaction between pathogen products and pattern recognition receptors can activate naive T cells to undergo Ag-dependent proliferation and cytokine production. In contrast, DC induced to mature by trans-acting inflammatory stimuli are believed to only be capable of supporting Ag-dependent proliferative responses. In this study, we show that uninfected DC matured as a consequence of Leishmania-induced inflammation induce CD8(+) T cells to proliferate in the absence of their cognate Ag. We separated splenic DC from Leishmania donovani-infected mice into those that contained parasites and had been activated to induce IL-12p40, from those that had undergone only partial maturation, measured by increased CD86 expression in the absence of IL-12p40 induction. We then showed that these partially matured DC could induce exogenous peptide-independent proliferation of OT-I and F5 CD8(+) TCR transgenic T cells, as well as polyclonal CD8(+) T cells. Proliferation of OT-I cells was significantly inhibited in vitro and in vivo by anti-CD86 mAb but not by anti-CD80 mAb and could also be inhibited by cyclosporine A. Proliferating OT-I cells did not produce IFN-gamma, even when re-exposed to mature DC. However, these primed OT-I cells subsequently produced effector cytokines, not just on exposure to their cognate peptide but, more importantly, to weak exogenous TCR agonists that otherwise failed to induce IFN-gamma. We further showed that OT-I cells undergoing locally driven proliferation to another pathogen, Streptococcus pneumoniae, rapidly seeded other lymphoid tissues, suggesting that CD8(+) T cells primed in this way may play a role in rapidly countering pathogen dissemination.
Project description:Inflammatory cytokines promote the accumulation of activated CD8 T cells. Here, we transfer 600 OT-I CD8 T cells iv into naïve C57BL/6 hosts. One day later, 500,000 LPS-matured and OVA257 peptide-coated DC were injected iv into OT-I CD8 T cell seeded hosts with (DC+CpG) or without (DC). Other seeded mice were infected with 2x10^4 virulent Listeria monocytogenes (vLM-OVA) iv. OT-I CD8 T cells were harvested from the spleen, flow sort purified, then RNA was extracted using RNeasy (Qiagen) kit. Naive OT-I CD8 T cells (Naive) were purified from the spleens of OT-I transgenic mice. Each group had three independent biological replicates.Transcriptomes were compared using DAVID analysis (with genes scoring FDR<0.01) and GSEA analysis. 3 biological replicates per group. Groups included Naïve OT-I CD8 T cells, DC+CpG OT-I CD8 T cells, DC OT-I CD8 T cells, and vLM-OVA OT-I CD8 T cells. Most comparisons used Naïve OT-I CD8 T cells as a baseline comparison
Project description:Dendritic cells (DCs) are antigen-presenting cells essential for the induction of adaptive immune responses. Their unprecedented ability to present antigens to T cells has made them excellent targets for vaccine development. In the last years, a new technology based on antigen delivery directly to different DC subsets through the use of hybrid monoclonal antibodies (mAbs) to DC surface receptors fused to antigens of interest opened new perspectives for the induction of robust immune responses. Normally, the hybrid mAbs are administered with adjuvants that induce DC maturation. In this work, we targeted an antigen to the CD8?+ or the CD8?- DC subsets in the presence of CpG oligodeoxinucleotides (ODN) or bacterial flagellin, using hybrid ?DEC205 or ?DCIR2 mAbs, respectively. We also accessed the role of toll-like receptors (TLRs) 5 and 9 signaling in the induction of specific humoral and cellular immune responses. Wild-type and TLR5 or TLR9 knockout mice were immunized with two doses of the hybrid ?DEC205 or ?DCIR2 mAbs, as well as with an isotype control, together with CpG ODN 1826 or flagellin. A chimeric antigen containing the Plasmodium vivax 19?kDa portion of the merozoite surface protein (MSP119) linked to the Pan-allelic DR epitope was fused to each mAb. Specific CD4+ T cell proliferation, cytokine, and antibody production were analyzed. We found that CpG ODN 1826 or flagellin were able to induce CD4+ T cell proliferation, CD4+ T cells producing pro-inflammatory cytokines, and specific antibodies when the antigen was targeted to the CD8?+ DC subset. On the other hand, antigen targeting to CD8?- DC subset promoted specific antibody responses and proliferation, but no detectable pro-inflammatory CD4+ T cell responses. Also, specific antibody responses after antigen targeting to CD8?+ or CD8?- DCs were reduced in the absence of TLR9 or TLR5 signaling, while CD4+ T cell proliferation was mainly affected after antigen targeting to CD8?+ DCs and in the absence of TLR9 signaling. These results extend our understanding of the modulation of specific immune responses induced by antigen targeting to DCs in the presence of different adjuvants. Such knowledge may be useful for the optimization of DC-based vaccines.
Project description:Activation of different pattern recognition receptors causes distinct profiles of innate immune responses, which in turn dictate the adaptive immune response. We found that mice had higher CD4+ T cell expansion to an immunogen, ovalbumin, when coadministered with CpG than with CL097 in vivo. To account for this differential adjuvanticity, we assessed the activities of CpG and CL097 on antigen-specific CD4+ T cell expansion in vitro using an OT-II CD4+ T cell/bone marrow-derived dendritic cell (DC) co-culture system. Unexpectedly, ovalbumin-stimulated expansion of OT-II CD4+ T cells in vitro was potently suppressed by both TLR agonists, with CL097 being stronger than CpG. The suppression was synergistically reversed by co-inhibition of cyclooxygenases 1 and 2, and inducible nitric oxide (NO) synthase. In addition, stimulation of OT-II CD4+ T cell/DC cultures with CL097 induced higher levels of CD4+ T cell death than stimulation with CpG, and this CD4+ T cell turnover was reversed by NO and PGE2 inhibition. Consistently, the co-cultures stimulated with CL097 produced higher levels of prostaglandin E2 (PGE2) and NO than stimulation with CpG. CL097 induced higher PGE2 production in DC cultures and higher IFN-? in the OT-II CD4+ T cell/DC cultures, accounting for the high levels of PGE2 and NO. This study demonstrates that the adjuvant activities of immunostimulatory molecules may be determined by differential induction of negative regulators, including NO and PGE2 suppressing clonal expansion and promoting cell death of CD4+ T cells.
Project description:CLRs on DCs play important roles in immunity and are expressed selectively on certain DC subsets. Murine DCAL2 (myeloid inhibitory C-type lectin/Clec12a) is a type-II CLR with an ITIM. Using a mouse DCAL2-specific mAb, we found that DCAL2 is expressed at relatively high levels on APCs and that DCAL2 expression can be used to divide CD8?- DCs into DCAL2+DCIR2- and DCAL2-DCIR2+ subpopulations. CD8?-DCAL2+ DC, CD8?-DCIR2+ DC, and CD8?+DCAL2+ DC subsets each express different levels of TLRs and respond to unique classes of TLR ligands by producing distinct sets of cytokines. Whereas CD8?-DCAL2+ DCs robustly produce cytokines, including IL-12, in response to CpG, CD8?-DCIR2+ DCs produce only TNF-? and IL-10 in modest amounts when stimulated with zymosan. However, CD8?-DCIR2+DCs, unlike the other DC subsets, strongly up-regulate OX40L when stimulated with bacterial flagellin. As predicted from their cytokine expression, CD8?-DCAL2+ DCs efficiently induced Th1 responses in the presence of CpG in vitro and in vivo, whereas CD8?-DCIR2+ DCs induced Th2 cells in response to flagellin. Thus, CD8?-DCAL2+ DCs comprise a distinct CD8?- DC subset capable of supporting Th1 responses. DCAL2 is a useful marker to identify a Th1-inducing CD8?- DC population.
Project description:We have recently reported that the toll-like receptor 3 (TLR3) agonist poly(I:C) induces adjuvant effects to post vaccination CD8+ T cells responses through rapid induction of innate mediators, including NK cells, macrophages, dendritic cells (DCs), and inflammatory cytokines. However, whether this TLR3 agonist directly targets CD8+ T cells needs to be carefully investigated. In this study, we found that optimal post vaccination CD8+ T cell responses to ex vivo DC-based vaccination requires triggering of TLR3 signaling pathway in DCs in vitro as well as in the recipient host, indicating a role for other cell types. Real-time PCR analysis revealed that TLRs (TLR1-TLR13) are expressed in purified (>99% pure) CD4+ and CD8+ T cells from C57BL/6 and BALB/c mice, where the magnitude of the expression was strain and cell type dependent. In vitro, treatment of these purified T cells with poly(I:C) modulated the expression of TLRs including TLR3. Furthermore, non-specific and antigen-specific stimulation of CD8+ T cells by phorbol myristate acetate and MHC class I peptide-pulsed splenocytes, respectively, modulated TLR expression in purified CD4+ and CD8+ T cells. Importantly, brief conditioning of purified naïve TCR transgenic OT-1 (CD8+) T cells in vitro with poly(I:C) induced activation of these cells in absence of antigen stimulation. Interestingly, when these in vitro poly(I:C)-conditioned OT-1 cells were adoptively transferred into naïve recipient followed by peptide vaccination, they showed superior expansion and activation to their naïve counterparts. These results suggest that CD8+ T cells can be activated by triggering their TLR3. Furthermore, the data support the notion of direct involvement of TLRs in adaptive immune responses.
Project description:The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-? by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.
Project description:We report the gene expression differences between OT-1 T cells activated alone or in the presence of TLR1/2 (Pam3CSK4) or TLR7 (Gardiquimod). By activating OT-1 splenocytes in the presence or absence of the TLR agonists, isolating RNA from purified CD8+ T cells we show that cells activated in the presence of either TLR1/2 or TLR7 agonists had similar transcriptional profiles demonstrating an increase in Th1 cytokine expression over cells that were activated alone. This study provides a key piece of information for those designing T cell mediated therapies. Overall design: Examintation of T cells activated in the presnece or absence of TLR agonists
Project description:Many current cancer vaccine strategies suffer from the inability to mount a CD8 T cell response that is strong enough to overcome the low immunogenicity of tumors. Viruses naturally possess the sizes, geometries, and physical properties for which the immune system has evolved to recognize, and mimicking those properties with nanoparticles can produce robust platforms for vaccine design. Using the nonviral E2 core of pyruvate dehydrogenase, we have engineered a viral-mimicking vaccine platform capable of encapsulating dendritic cell (DC)-activating CpG molecules in an acid-releasable manner and displaying MHC I-restricted SIINFEKL peptide epitopes. Encapsulated CpG activated bone marrow-derived DCs at a 25-fold lower concentration in vitro when delivered with the E2 nanoparticle than with unbound CpG alone. Combining CpG and SIINFEKL within a single multifunctional particle induced ?3-fold greater SIINFEKL display on MHC I by DCs over unbound peptide. Importantly, combining CpG and SIINFEKL to the E2 nanoparticle for simultaneous temporal and spatial delivery to DCs showed increased and prolonged CD8 T cell activation, relative to free peptide or peptide-bound E2. By codelivering peptide epitopes and CpG activator in a particle of optimal DC-uptake size, we demonstrate the ability of a noninfectious protein nanoparticle to mimic viral properties and facilitate enhanced DC activation and cross-presentation.