Project description:The cell identities of CD49f+GSCs were further identified by comparing them with the E11.5 PGCs and P2 GSCs. The transcriptomic analysis revealed that the CD49f+GSCs had 1/3 similar genes profile to the E11.5 PGCs and P2 GSCs. Further gene ontology (GO) analysis demonstrated that the E11.5 PGCs, P2 GSCs, and CD49f+GSCs shared the partial similar gene expression profile of pluripotency regulation signaling pathway, PI3K-AKT signaling, chemokine signaling, and HIF-1 signaling.
Project description:To gain insight into the role of Runx3 in TrkC neurons we performed RNA-seq on E11.5 TrkC neurons isolated from cervical ganglia of Runx3-P2+/- and Runx3-P2-/- mice
Project description:The present investigation was to identify transcriptomic changes of control and Dnd1-cKO PGCs at E11.5 by RNA-seq analysis. We identified 181 upregulated and 141 downregulated genes in Dnd1-cKO PGCs.
Project description:Central questions like cardiomyocyte subtype emergence during cardiogenesis or availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, characterization and implementation of pure cardiomyocyte subtypes is still challenging due to technical limitations. Our aim was to identify surface markers enabling the selective detection and purification of atrial and ventricular cardiomyocytes from mouse hearts. In a surface marker screen we found differential expression of CD49f in atrial and ventricular embryonic cardiomyocytes (E13.5). By flow cytometry we could correlate a high CD49f expression with MLC-2a on the single cell level; a low CD49f expression corresponded to MLC-2v. Based on the persisting differential CD49f expression we developed purification protocols for cardiomyocytes subtypes from the developing mouse heart. Flow sorting of E15.5 hearts into ErbB-2+/CD49flow and ErbB-2+/CD49fhigh cells led to a selective depletion (CD49flow) or enrichment of MLC-2a+ cells (CD49fhigh). We found a corresponding CD49f-dependent distribution of MLC-2a when pre-enriched neonatal cardiomyocytes (P2) were flow-sorted into CD49flow and CD49fhigh. Atrial and ventricular identity was confirmed by expression profiling and patch clamp analysis of sorted embryonic hearts, which unequivocally demonstrated that the sorted cells were viable and functional. For the first time, we introduce a non-genetic, antibody-based approach to specifically isolate atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This newly gained capability of obtaining highly pure, viable cells will facilitate in-depths characterization of the individual cellular subsets and will aid translational research and therapeutic applications. The dataset comprises four different cardiomyocytes subtypes from the developing mouse heart. Embryonic (E15.5) hearts were dissociated and flow-sorted into ErbB-2+/CD49flow and ErbB-2+/CD49fhigh cardiomyocytes. Neonatal (P2) hearts were dissociated, contaminating non-myocytes were removed by MACS depletion, and the purified cardiomyocytes were flow-sorted into CD49flow and CD49fhigh cardiomyocytes. Four biological replicates were available for each sample groups. Microarray analysis was conducted on the Agilent Whole Mouse Genome Oligo Microarray 8x60K platform.
Project description:Central questions like cardiomyocyte subtype emergence during cardiogenesis or availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, characterization and implementation of pure cardiomyocyte subtypes is still challenging due to technical limitations. Our aim was to identify surface markers enabling the selective detection and purification of atrial and ventricular cardiomyocytes from mouse hearts. In a surface marker screen we found differential expression of CD49f in atrial and ventricular embryonic cardiomyocytes (E13.5). By flow cytometry we could correlate a high CD49f expression with MLC-2a on the single cell level; a low CD49f expression corresponded to MLC-2v. Based on the persisting differential CD49f expression we developed purification protocols for cardiomyocytes subtypes from the developing mouse heart. Flow sorting of E15.5 hearts into ErbB-2+/CD49flow and ErbB-2+/CD49fhigh cells led to a selective depletion (CD49flow) or enrichment of MLC-2a+ cells (CD49fhigh). We found a corresponding CD49f-dependent distribution of MLC-2a when pre-enriched neonatal cardiomyocytes (P2) were flow-sorted into CD49flow and CD49fhigh. Atrial and ventricular identity was confirmed by expression profiling and patch clamp analysis of sorted embryonic hearts, which unequivocally demonstrated that the sorted cells were viable and functional. For the first time, we introduce a non-genetic, antibody-based approach to specifically isolate atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This newly gained capability of obtaining highly pure, viable cells will facilitate in-depths characterization of the individual cellular subsets and will aid translational research and therapeutic applications.
Project description:The therapeutic use of regulatory T cells (Tregs) in patients with autoimmune disorders has been hampered by the biological variability of memory Treg populations in the peripheral blood. In this study, we reveal through a combination of quantitative proteomic, multiparametric flow cytometry, RNA-seq data analysis and functional assays, that CD49f is heterogeneously expressed among human Tregs and impacts their immunomodulatory function. High expression of CD49f defines a subset of dysfunctional Tregs in the human blood characterized by a Th17-like phenotype and impaired suppressive capacity. CD49f is similarly distributed between naïve and memory Tregs and impacts the expression of CD39, CTLA-4, FoxP3 and CCR6 specifically in the memory compartment. Accumulation of CD49f high memory Tregs in the blood of ulcerative colitis patients correlates with disease severity. Our results highlight important considerations for Treg immunotherapy design in patients with inflammatory bowel disease which could possibly extend to other autoimmune disorders.
Project description:Purpose: miRNAs, a member of the small RNA, play critical roles in the mammalian spermatogenesis. Spermatogonia was the foundation of spermatogenesis and valuable for the study of spermatogenesis. However, it is still not clear that the expression profiling of the miRNAs in spermatogonia of dairy goat. Methods: The CD49f was one of the surface markers for spermatogonia enrichment by MACS. Therefore, we used CD49f microbeads antibody to purify CD49f-positive and negative cells of dairy goat testicular cells by MACS (Magnetic Activated Cell Sorting), and then in-depth analyzed the miRNA expression in these cells using Illumina sequencing technology. Results: The results of miRNAs expression profiling in purified CD49f-positive and negative testicular cells showed that 933 were miRNAs upregulated in CD49f-positive cells and 916 were miRNAs upregulated in CD49f-negative cells with a 2-fold increase, respectively; some spermatogonial stem cells(SSCs) specific miRNAs and marker genes in testis had a higher level expression in CD49f-positive testicular cells, such as miR-221, miR-23a, miR-29b, miR-24, miR-29a, miR-199b, miR-199a, miR-27a, miR-21. Conclusions: our comparative miRNAome data provided some useful miRNAs profiling data of dairy goat spermatogonia cells and suggested CD49f could be used to enrich dairy goat spermatogonia-like cells, including SSCs.
Project description:We defined CD49f-high, CD49f-low and CD49f-neg mesenchymal subpopulations in the dermis. Transcriptome analysis revealed that CD49fhigh cells highly express gene regulatory network of neural crest cells, while CD49flow cells were enriched with melanocyte lineage development and maintenance related genes. The identity and function of above cell populations were further verified by lineage tracing.