Project description:<i>Phalaenopsis cornu-cervi</i> is a taxonomically and horticulturally important moth orchid. In this study, we report and characterize the complete plastid genome sequence of <i>P. cornu-cervi</i> for the first genomic resources in section <i>Polychilos</i>. Its complete plastome is 147,241?bp in length and contains two inverted repeat (IR) regions of 25,005bp, a large single-copy (LSC) region of 85,714?bp, and a small single-copy (SSC) region of 11,517?bp. The plastome contains 110 genes, consisting of 76 unique protein-coding genes, 30 unique tRNA genes, and 4 unique rRNA genes. It also shows the typical characteristics of <i>Phalaenopsis</i> chloroplast genome, while all <i>ndh</i> genes are non-functional. The complete plastome sequence of <i>P. cornu-cervi</i> will provide a useful resource for future phylogenetic study of <i>Phalaenopsis</i> and its garden utilization.
Project description:We determined the complete mitochondrial DNA (mtDNA) sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae). This genome (14,014 bp) is slightly larger than that of Clonorchis sinensis (13,875 bp), but smaller than those of other digenean species. The mt genome of P. cervi contains 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions (NCRs), a complement consistent with those of other digeneans. The arrangement of protein-coding and ribosomal RNA genes in the P. cervi mitochondrial genome is identical to that of other digeneans except for a group of Schistosoma species that exhibit a derived arrangement. The positions of some transfer RNA genes differ. Bayesian phylogenetic analyses, based on concatenated nucleotide sequences and amino-acid sequences of the 12 protein-coding genes, placed P. cervi within the Order Plagiorchiida, but relationships depicted within that order were not quite as expected from previous studies. The complete mtDNA sequence of P. cervi provides important genetic markers for diagnostics, ecological and evolutionary studies of digeneans.
Project description:The bacteria of the genus Bartonella are obligate parasites of vertebrates. Their distribution range covers almost the entire world from America, Europe, Asia to Africa and Australia. Some species of Bartonella are pathogenic for humans. Their main vectors are blood-sucking arthropods such as fleas, ticks and blood-feeding flies. One such dipteran able to transfer vector-borne pathogens is the deer ked (Lipoptena cervi) of the family Hippoboscidae. This species acts as a transmitter of Bartonella spp. in cervid hosts in Europe.In the present study, 217 specimens of deer ked (Lipoptena cervi) were collected from 26 red deer (Cervus elaphus) hunted in January 2014. A short fragment (333 bp) of the rpoB gene was used as a marker to identify Bartonella spp. in deer ked tissue by PCR test. A longer fragment (850 bp) of the rpoB gene was amplified from 21 of the positive samples, sequenced and used for phylogenetic analysis.The overall prevalence of Lipoptena cervi infection with Bartonella spp. was 75.12% (163/217); 86.67% (104/120) of females and 60.82% (59/97) of males collected from red deer hunted in the Strzałowo Forest District in Poland (53°45'57.03″N, 21°25'17.79″E) were infected. The nucleotide sequences from 14 isolates (Bartonella sp. 1) showed close similarity to Bartonella schoenbuchensis isolated from moose blood from Sweden (GenBank: KB915628) and human blood from France (GenBank: HG977196); Bartonella sp. 2 (5 isolates) and Bartonella sp. 3 (one isolate) were similar to Bartonella sp. from Japanese sika deer (GenBank: AB703149), and Bartonella sp. 4 (one isolate) was almost identical to Bartonella sp. isolated from Japanese sika deer from Japan (GenBank: AB703146).To the best of our knowledge, this is the first report to confirm the presence of Bartonella spp. in deer keds (Lipoptena cervi) in Poland by molecular methods. Bartonella sp. 1 isolates were most closely related to B. schoenbuchensis isolated from moose from Sweden and human blood from France. The rest of our isolates (Bartonella spp. 2-4) were similar to Bartonella spp. isolated from Japanese sika deer from Japan.
Project description:<h4>Background</h4>Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level.<h4>Methodology/principal findings</h4>We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis.<h4>Conclusions/significance</h4>Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.
Project description:The moth orchid (Phalaenopsis species) is an ornamental crop that is highly commercialized worldwide. Over 30,000 cultivars of moth orchids have been registered at the Royal Horticultural Society (RHS). These cultivars were obtained by artificial pollination of interspecific hybridization. Therefore, the identification of different cultivars is highly important in the worldwide market.We used Illumina sequencing technology to analyze an important species for breeding, Phalaenopsis aphrodite subsp. formosana and develop the expressed sequence tag (EST)-simple sequence repeat (SSR) markers. After de novo assembly, the obtained sequence covered 29.1 Mb, approximately 2.2% of the P. aphrodite subsp. formosana genome (1,300 Mb), and a total of 1,439 EST-SSR loci were detected. SSR occurs in the exon region, including the 5' untranslated region (UTR), coding region (CDS), and 3'UTR, on average every 20.22 kb. The di- and tri-nucleotide motifs (51.49% and 35.23%, respectively) were the two most frequent motifs in the P. aphrodite subsp. formosana. To validate the developed EST-SSR loci and to evaluate the transferability to the genus Phalaenopsis, thirty tri-nucleotide motifs of the EST-SSR loci were randomly selected to design EST-SSR primers and to evaluate the polymorphism and transferability across 22 native Phalaenopsis species that are usually used as parents for moth orchid breeding. Of the 30 EST-SSR loci, ten polymorphic and transferable SSR loci across the 22 native taxa can be obtained. The validated EST-SSR markers were further proven to discriminate 12 closely related Phalaenopsis cultivars. The results show that it is not difficult to obtain universal SSR markers by transcriptome deep sequencing in Phalaenopsis species.This study supported that transcriptome analysis based on deep sequencing is a powerful tool to develop SSR loci in non-model species. A large number of EST-SSR loci can be isolated, and about 33.33% EST-SSR loci are universal markers across the Phalaenopsis breeding germplasm after preliminary validation. The potential universal EST-SSR markers are highly valuable for identifying all of Phalaenopsis cultivars.
Project description:Infections with Bartonella spp. have been recognized as emerging zoonotic diseases in humans. Large knowledge gaps exist, however, relating to reservoirs, vectors, and transmission of these bacteria. We describe identification by culture, PCR, and housekeeping gene sequencing of Bartonella spp. in fed, wingless deer keds (Lipoptena cervi), deer ked pupae, and blood samples collected from moose, Alces alces, sampled within the deer ked distribution range in Norway. Direct sequencing from moose blood sampled in a deer ked-free area also indicated Bartonella infection but at a much lower prevalence. The sequencing data suggested the presence of mixed infections involving two species of Bartonella within the deer ked range, while moose outside the range appeared to be infected with a single species. Bartonella were not detected or cultured from unfed winged deer keds. The results may indicate that long-term bacteremia in the moose represents a reservoir of infection and that L. cervi acts as a vector for the spread of infection of Bartonella spp. Further research is needed to evaluate the role of L. cervi in the transmission of Bartonella to animals and humans and the possible pathogenicity of these bacteria for humans and animals.
Project description:BACKGROUND: Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding. RESULTS: We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes) of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species. CONCLUSION: Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive DNA and SSR markers, and the extent of microsynteny with other plant species. This work provides a basis for future physical mapping of the Phalaenopsis genome and advances our knowledge thereof.
Project description:The Phalaenopsis orchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis 'KHM190' cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima 'B8802,' a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role of PhAGL6b in the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b leads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of the Phalaenopsis orchids.