Project description:Earthworms show a wide spectrum of regenerative potential with certain species like Eisenia fetida, a terrestrial redworm, capable of regenerating more than two-thirds of their body while other closely related species, such as Paranais litoralis seem to have lost this ability. Earthworms belong to the phylum annelida, in which the genomes of the marine oligochaete Capitella telata, and the freshwater leech Helobdella robusta have been sequenced and studied. Herein, we report the de novo assembled transcriptome of Eisenia fetida (Indian isolate), along with an analysis of the transcriptomic changes during regeneration. We also used de novo assembled RNAseq data to identify genes that are differentially expressed during regeneration, both in the newly regenerating cells and in the adjacent tissue.
Project description:Prokaryotic metagenome-assembled genomes retrieved from Amazon river basin water samples metagenomes sequenced in Illumina platform
Project description:Chemostat incubations were established and inoculated with sediments collected from Canyon Creek, Calgary, Alberta, Canada. The chemostats experienced oxic-anoxic change of different frequency, High-frequency, Medium-frequency and Low-frequency. 18 samples were collected at the end of the final oxic phase and the final anoxic phase in the triplicated chemostats for metagenomic and metaproteomic analysis. 26 genomes were assembled from metagenomes. Proteomes were used to investigate translational regulation of each population associated with a genome.
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212).