Project description:Enterohemorrhagic Escherichia coli O157:H7 (EHEC) causes bloody diarrhea and hemolytic-uremic syndrome. EHEC encodes the sRNA chaperone Hfq, which is important in posttranscriptional regulation. In EHEC strain EDL933, Hfq acts as a negative regulator of the locus of enterocyte effacement (LEE), which encodes most of the proteins involved in type III secretion and attaching and effacing (AE) lesions. Here, we deleted hfq in the EHEC strain 86-24 and compared global transcription profiles of the hfq mutant and wild-type (WT) strains in exponential growth phase. Deletion of hfq affected transcription of genes common to nonpathogenic and pathogenic strains of E. coli as well as pathogen-specific genes. Downregulated genes in the hfq mutant included ler, the transcriptional activator of all the LEE genes, as well as genes encoded in the LEE2 to -5 operons. Decreased expression of the LEE genes in the hfq mutant occurred at middle, late, and stationary growth phases. We also confirmed decreased regulation of the LEE genes by examining the proteins secreted and AE lesion formation by the hfq mutant and WT strains. Deletion of hfq also caused decreased expression of the two-component system qseBC, which is involved in interkingdom signaling and virulence gene regulation in EHEC, as well as an increase in expression of stx(2AB), which encodes the deadly Shiga toxin. Altogether, these data indicate that Hfq plays a regulatory role in EHEC 86-24 that is different from what has been reported for EHEC strain EDL933 and that the role of Hfq in EHEC virulence regulation extends beyond the LEE.
Project description:Escherichia coli Nissle 1917 (EcN) is a probiotic used for treatment of intestinal disorders. EcN improves gastrointestinal homeostasis and microbiota balance; however little is known about how this probiotic delivers effector molecules to the host. Outer membrane vesicles (OMVs) are constitutively produced by gram-negative bacteria and have a relevant role in bacteria-host interactions. Here we performed proteomic analysis of EcN OMVs. Using 1D SDSD-PAGE and highly sensitive LC-MS/MS analysis we identified 192 EcN vesicular proteins with high confidence in three independent experiments. Of these proteins, 18 were encoded by strain-linked genes and 57 were common to pathogen-derived OMVs. These proteins may contribute to the ability of this probiotic to colonize the human gut as they fulfil functions related to adhesion to host tissues, immune modulation or bacterial survival in host niches. This study describes the first global OMV proteome of a probiotic strain and provides evidence that probiotic-derived OMVs contain proteins that can target these vesicles to the host and mediate their beneficial effects on intestinal function.
Project description:Escherichia coli EDL933 is the prototypic strain for enterohemorrhagic E. coli serotype O157:H7, associated with deadly food-borne outbreaks. Because the publicly available sequence of the EDL933 genome has gaps and >6,000 ambiguous base calls, we here present an updated high-quality, unambiguous genome sequence with no assembly gaps.
Project description:Bacteriophages (phages) are ideal alternatives to traditional antimicrobial agents in a world where antimicrobial resistance (AMR) is emerging and spreading at an unprecedented speed. In addition, due to their narrow host ranges, phages are also ideal tools to modulate the gut microbiota in which alterations of specific bacterial strains underlie human diseases, while dysbiosis caused by broad-spectrum antibiotics can be harmful. Here, we engineered a lambda phage (Eλ) to target enterohemorrhagic Escherichia coli (EHEC) that causes a severe, sometimes lethal intestinal infection in humans. We enhanced the killing ability of the Eλ phage by incorporating a CRISPR-Cas3 system into the wild-type λ (wtλ) and the specificity by introducing multiple EHEC-targeting CRISPR spacers while knocking out the lytic gene cro. In vitro experiments showed that the Eλ suppressed the growth of EHEC up to 18 h compared with only 6 h with the wtλ; at the multiplicity of infection (MOI) of 10, the Eλ killed the EHEC cells with ~100% efficiency and did not affect the growth of other laboratory- and human-gut isolated E. coli strains. In addition, the EHEC cells did not develop resistance to the Eλ. Mouse experiments further confirmed the enhanced and strain-specific killing of the Eλ to EHEC, while the overall mouse gut microbiota was not disturbed. Our methods can be used to target other genes that are responsible for antibiotic resistance genes and/or human toxins, engineer other phages, and support in vivo application of the engineered phages. IMPORTANCE Pathogenic strains of Escherichia coli are responsible for 0.8 million deaths per year and together ranked the first among all pathogenic species. Here, we obtained, for the first time, an engineered phage, Eλ, that could specifically and efficiently eliminate EHEC, one of the most common and often lethal pathogens that can spread from person to person. We verified the superior performance of the Eλ over the wild-type phage with in vitro and in vivo experiments and showed that the Eλ could suppress EHEC growth to nondetectable levels, fully rescue the EHEC-infected mice, and rescore disturbed mouse gut microbiota. Our results also indicated that the EHEC did not develop resistance to the Eλ, which has been the biggest challenge in phage therapy. We believe our methods can be used to target other pathogenic strains of E. coli and support in vivo application of the engineered phages.
Project description:An experiment to identify the downstream targets of PatE, a prophage encoded AraC-like transcriptional regulator, in transcriptional activation of acid-resistance pathways of enterohemorrhagic Escherichia coli strain EDL933 using deletion and complementation strains (Delta3 and Delta3_1, respectively).