Proteomics

Dataset Information

0

Ribosome impairment regulates intestinal stem cell identity via ZAKa activation.


ABSTRACT: The small intestine is a rapidly proliferating organ that is maintained by a small population of Lgr5-expressing intestinal stem cells (ISCs). However, several Lgr5-negative ISC populations have been identified, and this remarkable plasticity allows the intestine to rapidly respond to both the local environment and to damage. The mediators of such plasticity are still largely unknown. Using intestinal organoids and mouse models, we show that upon ribosome impairment (driven by Rptor deletion, amino acid starvation, or low dose cyclohexamide treatment) ISCs gain an Lgr5-negative, fetal-like identity. This is accompanied by a rewiring of metabolism. Our findings suggest that the ribosome can act as a sensor of nutrient availability, allowing ISCs to respond to the local nutrient environment. Mechanistically, we show that this phenotype requires the activation of ZAKɑ, which in turn activates YAP, via SRC. Together, our data reveals a central role for ribosome dynamics in intestinal stem cells, and identify the activation of ZAKɑ as a critical mediator of stem cell identity.

INSTRUMENT(S): Orbitrap Fusion

ORGANISM(S): Mus Musculus (mouse)

TISSUE(S): Cell Culture

SUBMITTER: Liesbeth Hoekman  

LAB HEAD: Maarten Altelaar

PROVIDER: PXD033122 | Pride | 2022-06-13

REPOSITORIES: Pride

Similar Datasets

2022-06-08 | GSE180208 | GEO
2013-04-25 | E-GEOD-46303 | biostudies-arrayexpress
2022-08-11 | PXD021528 | Pride
2014-12-05 | E-GEOD-62784 | biostudies-arrayexpress
2019-02-28 | GSE123515 | GEO
2019-02-28 | GSE117783 | GEO
2017-04-28 | GSE92961 | GEO
2014-12-04 | E-GEOD-51751 | biostudies-arrayexpress
2016-02-18 | E-GEOD-74774 | biostudies-arrayexpress
2011-10-17 | E-GEOD-32987 | biostudies-arrayexpress