Proteomics

Dataset Information

0

Eps8, Arp2/3 and IRSp53 in TNT formation


ABSTRACT: Tunneling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How the cell controls a common pool of proteins to generate these protrusions spanning length scales beyond those attainable by canonical filopodia remains unknown. Through a combination of surface micropatterning and optical tweezer-based approaches, we found that Arp2/3-dependent pathways attenuate the extent with which actin polymerizes in nanotubes, limiting the formation and attainable lengths of TNTs. Proteomic analysis using Epidermal growth factor receptor kinase substrate 8 (Eps8) as a positive effector of TNTs showed that upon Arp2/3 inhibition, proteins enhancing filament turnover and depolymerization were reduced and instead Eps8 exhibited heightened interactions with the inverted Bin/Amphiphysin/Rvs (I-BAR) domain protein IRSp53 that provides a direct connection with linear actin polymerases. Our data reveals how common players in protrusions (Eps8 and IRSp53) facilitate the formation of TNTs, and that this Eps-IRSp53 interaction is enhanced when competing pathways overutilizing actin in branched Arp2/3 networks are inhibited to drive outward actin extension.

INSTRUMENT(S): Q Exactive

ORGANISM(S): Mus Musculus (mouse)

SUBMITTER: MARIETTE MATONDO  

LAB HEAD: Michael Henderson

PROVIDER: PXD034649 | Pride | 2023-11-27

REPOSITORIES: Pride

Similar Datasets

2023-11-28 | PXD035976 | Pride
2020-08-25 | PXD018947 | Pride
2017-11-23 | GSE107265 | GEO
2017-11-23 | GSE107264 | GEO
2010-10-08 | E-GEOD-19565 | biostudies-arrayexpress
2022-04-01 | GSE175391 | GEO
2021-01-07 | PXD018296 | Pride
2024-04-12 | GSE242944 | GEO
2022-02-16 | PXD011013 | Pride
2019-11-11 | PXD013504 | Pride