Project description:Maintenance of NAD+ levels by mitochondrial complex I, the NAD+ salvage pathway, and other routes is an important factor in of neurodegenerative disease and cancer. Both the production of NAD+ and the metabolic enzymes that require it as a redox cofactor or substrate differ widely in abundance across cell types and conditions. Disruption in the NAD+ supply thus exerts different effects depending on the cellular NAD+ requirements existing in the cell. Pharmacological depletion of NAD+ is actively being pursued in cancer and other diseases but these effects are not fully understood. Here, we combine quantitative proteomics and metabolomics to understand the consequences of disrupting cellular NAD+ levels and find that inhibiting the NAD+ salvage pathway depletes serine biosynthesis from glucose by impeding the NAD+-dependent protein 3-phosphoglycerate dehydrogenase (PHGDH). Importantly, breast cancers that depend on PHGDH are exquisitely sensitive to blocking the NAD+ salvage pathway. PHGDH, and the rate-limiting enzyme of NAD+ salvage are also correlated in public tumor proteome and transcript datasets. These findings are immediately translatable to the pharmacological inhibition of NAMPT in PHGDH-dependent cancers.
Project description:Investigation of whole genome expression pattern of 60 and 72 hours post fertilization Danio Rerio embryos exposed to TMT and vehicle control Embryos were exposed to 10uM TMT or control from 48hpf to 60 or 72 hpf. Three replicates were collected for each time point. 40 embryos were pooled to comprise a replicate.
Project description:The rat pheochromocytoma cell line PC12 cells were cultured in complete DMEM till 80% confluence, then placed at 5000 cells per squared cm. Cells were then plated in 24-well plates for cell viability assay and in T75 flasks for RNA isolation. Medium was replaced with serum-free fresh medium for 12 hours prior to TMT treatment. Gene expression patterns were then analysed using Rat Expression Array 230A Experiment Overall Design: In this study we analize gene expression patterns in PC12 cells treated with Trimethyltin (TMT). We utilized control cells (untreated) and two different concentration (1 and 5) Experiment Overall Design: We used three biological replicates, for the three concentration tested, according to MIAME guidelines Experiment Overall Design: (total 9 chips were used in this study).
Project description:The Human Induced Pluripotent Stem Cells Initiative (HipSci) is generating a large, high-quality reference panel of human IPSC lines. This is a pilot submission of mass-spectrometry analyses from 18 induced pluripotent stem cell lines generated by the HipSci project. This submission includes also data for two embryonic stem cell lines, and one reference sample comprising a mixture of 42 IPSC lines. Raw data files for this study can be accessed from the PRIDE database at EMBL-EBI under accession number PXD003903: http://www.ebi.ac.uk/pride/archive/projects/PXD003903.
Project description:Sleep regulation follows a homeostatic pattern. The mammalian cerebral cortex is the repository of homeostatic sleep drive and neurons and astrocytes of the cortex are principal responders of sleep need. The molecular mechanisms by which these two cell types respond to sleep loss are not yet clearly understood. By combining cell-type specific transcriptomics and nuclear proteomics we investigated how sleep loss affects the cellular composition and molecular profiles of these two cell types in a focused approach. The results indicate that sleep deprivation regulates gene expression and nuclear protein abundance in a cell-type-specific manner. Our integrated multi-omics analysis suggests that this distinction arises because neurons and astrocytes employ different gene regulatory strategies under accumulated sleep pressure. These findings provide a comprehensive view of the effects of sleep deprivation on gene regulation in neurons and astrocytes.
Project description:Hydrogen sulfide (H2S) is a cytoprotective redox-active metabolite that signals through protein persulfidation (R-SSnH). Despite the known importance of persulfidation on relatively few identified proteins, tissue-specific sulfhydrome profiles and their associated functions are not well characterized, specifically under conditions known to modulate H2S production. We hypothesized that dietary restriction (DR), which increases lifespan and can boost H2S production, expands tissue-specific sulfhydromes. Here, we found protein persulfidation was enriched in liver, kidney, muscle, and brain but decreased in heart of young and aged male mice under two forms of DR, with DR promoting persulfidation in numerous metabolic and aging-related pathways. Mice lacking H2S producing enzyme cystathionine γ-lyase (CGL) had overall decreased tissue protein persulfidation and failed to functionally augment sulfhydromes in response to DR. Overall, we defined tissue- and CGL-dependent sulfhydromes and how diet transforms their makeup, underscoring the breadth for DR and H2S to impact biological processes and organismal health.
Project description:Hydrogen sulfide (H2S) is a cytoprotective redox-active metabolite that signals through protein persulfidation (R-SSnH). Despite the known importance of persulfidation on relatively few identified proteins, tissue-specific sulfhydrome profiles and their associated functions are not well characterized, specifically under conditions known to modulate H2S production. We hypothesized that dietary restriction (DR), which increases lifespan and can boost H2S production, expands tissue-specific sulfhydromes. Here, we found protein persulfidation was enriched in liver, kidney, muscle, and brain but decreased in heart of young and aged male mice under two forms of DR, with DR promoting persulfidation in numerous metabolic and aging-related pathways. Mice lacking H2S producing enzyme cystathionine γ-lyase (CGL) had overall decreased tissue protein persulfidation and failed to functionally augment sulfhydromes in response to DR. Overall, we defined tissue- and CGL-dependent sulfhydromes and how diet transforms their makeup, underscoring the breadth for DR and H2S to impact biological processes and organismal health.
Project description:Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyper-aggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. GBM specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide new evidence that diet modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.
Project description:Hydrogen sulfide (H2S) is a cytoprotective redox-active metabolite that signals through protein persulfidation (R-SSnH). Despite the known importance of persulfidation on relatively few identified proteins, tissue-specific sulfhydrome profiles and their associated functions are not well characterized, specifically under conditions known to modulate H2S production. We hypothesized that dietary restriction (DR), which increases lifespan and can boost H2S production, expands tissue-specific sulfhydromes. Here, we found protein persulfidation was enriched in liver, kidney, muscle, and brain but decreased in heart of young and aged male mice under two forms of DR, with DR promoting persulfidation in numerous metabolic and aging-related pathways. Mice lacking H2S producing enzyme cystathionine γ-lyase (CGL) had overall decreased tissue protein persulfidation and failed to functionally augment sulfhydromes in response to DR. Overall, we defined tissue- and CGL-dependent sulfhydromes and how diet transforms their makeup, underscoring the breadth for DR and H2S to impact biological processes and organismal health.
Project description:Peripubertal endocrine disruption has immediate and lifelong consequences on health, cognition, and lifespan. Disruption comes from dietary, environmental, and pharmaceutical sources. The plasticizer Bisphenol A (BPA) is one such endocrine disrupting chemical (EDC). However, it’s unclear if peripubertal BPA exposure incites long-lasting physiological, neuro-cognitive, and/or longevity-related metabolic impairments. Catabolism of cysteine via transsulfuration enzymes produces hydrogen sulfide (H2S), a redox-modulating gasotransmitter causative to endocrine and metabolic homeostasis and improved cognitive function with age. As thyroid hormone (TH) regulates hepatic H2S production and BPA is a TH receptor antagonist, we hypothesized BPA exposure during peripubertal development impairs metabolic and neuro-cognitive/behavioral endpoints in aged mice, in part, due to altered peripheral H2S production. Results: To test this, male C57BL/6J mice at 5 weeks of age were orally exposed for 5 weeks to 250 ug BPA/kg defined as low dose group (LD BPA), or 250 mg BPA/kg defined as high dose group (HD BPA). Both LD and HD BPA exposure decreased lean mass and increased fat mass. These changes were accompanied by decreased serum total TH. Additionally, LD BPA had an anxiogenic effect while HD BPA caused cognitive deficits. Notably, HD BPA attenuated renal H2S production both acutely and during aging, which correlated with spatial memory deficits. Innovation and Conclusion: These findings provide a potential mechanism of action for the acute and long-term health impacts of BPA-induced peripubertal endocrine disruption and bolster the need for improved monitoring and limitation of adolescent BPA exposure.