Project description:The environmental fate of conifer resins and their natural product compounds as mixtures is of importance for source, alteration, and transport studies. The compound compositions of resins of the common Callitris species (Cupressaceae) based on gas chromatography-mass spectrometry have not been reported. Results show that diterpenoids were the most abundant components and callitrisic acid was present in the resin extracts of all Callitris species analyzed. Significant amounts of 4-epi-pimaric and sandaracopimaric acids, with lesser communic, ozic, and lambertianic acids, were also in the mixtures. Phenolic diterpenoids, for example, ferruginol, hinokiol, were found in trace quantities in some samples. Thus, callitrisic acid and 4-epi-pimaric acid are the characteristic diterpenoids of Callitris species that are amenable to molecular biomarker analyses in geological or environmental applications.
Project description:In spite of the evidence for antimicrobial and acaricidal effects in ethnobotanical reports of Callitris and Widdringtonia, the diterpene acids from Widdringtonia have never been described and no comparison to the Australian clade sister genus Callitris has been made. The critically endangered South African Clanwilliam cedar, Widdringtonia wallichii (syn. W. cedarbergensis), of the Cederberg Mountains was once prized for its enduring fragrant timbers and an essential oil that gives an aroma comparable to better known Mediterranean cedars, predominantly comprised by widdrol, cedrol, and thujopsene. In South Africa, two other 'cedars' are known, which are called W. nodiflora and W. schwarzii, but, until now, their chemical similarity to W. wallichii has not been investigated. Much like Widdringtonia, Callitris was once prized for its termite resistant timbers and an 'earthy' essential oil, but predominantly guaiol. The current study demonstrates that the essential oils were similar across all three species of Widdringtonia and two known non-volatile diterpene acids were identified in leaves: the pimaradiene sandaracopimaric acid (1) and the labdane Z-communic acid (2) with a lower yield of the E-isomer (3). Additionally, in the leaves of the three species, the structures of five new antimicrobial labdanes were assigned: 12-hydroxy-8R,17-epoxy-isocommunic acid (4), 8S-formyl-isocommunic acid (5), 8R,17-epoxy-isocommunic acid (6), 8R-17R-epoxy-E-communic acid (7), and 8R-17-epoxy-E-communic acid (8). Australian Callitris columellaris (syn. C. glaucophylla) also produced 1 and its isomer isopimaric acid, pisiferal (9), and pisiferic acid (10) from its leaves. Callitris endlicheri (Parl.) F.M.Bailey yielded isoozic acid (11) as the only major diterpene. Diterpenes 4-6, pisiferic acid (10), spathulenol, and guaiol (12) demonstrated antimicrobial and acaricidal activity.
Project description:Microsatellite markers were developed for Callitris sulcata (Cupressaceae), an endangered conifer species in New Caledonia. Using sequencing by synthesis (SBS) of an RNA-Seq library, 15 polymorphic nuclear and chloroplast microsatellite markers were developed. When evaluated with 48 individuals, these markers showed genetic variations ranging from two to 15 alleles and expected heterozygosity ranging from 0 to 0.881. These markers will be useful for examining the genetic diversity and structure of remaining wild populations and improving the genetic status of ex situ populations.
Project description:The goal of this project was to identify strain-dependent expression of miRNAs in lung tissue from Collaborative Cross founder strains that were sensitized and challenged with house dust mite allergen (Der p 1).
Project description:The ideal plant water transport system is one that features high efficiency and resistance to drought-induced damage (xylem cavitation), however, species rarely possess both. This may be explained by trade-offs between traits, yet thus far, no proposed trade-off has offered a universal explanation for the lack of water transport systems that are both highly drought-resistant and highly efficient. Here, we find evidence for a new trade-off, between growth rate and resistance to xylem cavitation, in the canopies of a drought-resistant tree species (Callitris rhomboidea). Wide variation in cavitation resistance (P50) was found in distal branch tips (<2 mm in diameter), converging to low variation in P50 in larger diameter stems (>2 mm). We found a significant correlation between cavitation resistance and distal branchlet internode length across branch tips in C. rhomboidea canopies. Branchlets with long internodes (8 mm or longer) were significantly more vulnerable to drought-induced xylem cavitation than shorter internodes (4 mm or shorter). This suggests that varying growth rates, leading to differences in internode length, drive differences in cavitation resistance in C. rhomboidea trees. The only distinct anatomical difference found between internodes was the pith size, with the average pith to xylem area in long internodes being five times greater than in short internodes. Understanding whether this trade-off exists within and between species will help us to uncover what drives and limits drought resistance across the world's flora.