Project description:Cardiovascular (CV) disease is a leading cause of morbidity and mortality in Western societies. Even after accounting for traditional CV risk factors (e.g. obesity, smoking and hypertension), the inflammation-driven thickening and stiffening of central arteries is a strong predictor of adverse outcomes. Arterial wall changes are universally associated with advancing age and show unparalleled worsening in metabolic syndrome. In mice, resveratrol ameliorates a high-fat diet induced arterial wall inflammation and slows age-associated physiologic deteriorations within the arterial wall. Here we tested resveratrol in adult male rhesus monkeys, an experimental model relevant to humans. A diet rich in fat and sucrose (HFS) led to an increase in body weight as well as thickening and stiffening of the aortic wall, marked by diffuse inflammation, fibrosis and fat infiltration. Dietary resveratrol supplementation prevented diet-induced structural and functional alterations within the aortic wall, and abrogated the deleterious vascular endothelial and smooth muscle responses. Integrative genomic and proteomic analyses of aortic tissues revealed molecular signatures consistent with improved vascular functions. Thus, resveratrol conferred protection against the initiation of diet-induced inflammatory events that progress to pathological thickening and stiffening of large arteries. Dietary resveratrol may therefore hold promise as a novel therapy to ameliorate metabolic stress-induced CV disease. After baseline assessment, four male rhesus monkeys remained on the healthy standard diet (SD), 10 male rhesus monkeys were begun on a high fat/high sucrose (HFS) diet and 10 male rhesus monkeys were begun on a high fat/high sucrose (HFS) diet plus Resveratrol, 80mg/day. After one year of dietary intervention, the amount of resveratrol was increased to 240mg/day for one additional year. Tissues were then harvested for the array experiments.
Project description:Purpose: Using a C57BL6/J mouse model of diet-induced obesity, we observed that mannose supplementation of high fat diet-fed mice prevents weight gain, lowers adiposity, reduces liver steatosis, and improves glucose tolerance and insulin sensitivity. Mannose increases Bacteroidetes to Firmicutes ratio of the gut microbiota, a signature previously associated with the lean phenotype. These beneficial effects of mannose are observed when supplementation is started early (3 weeks post weaning) but are lost when started later in life (8 weeks post weaning). We profiled transcriptomes of gut microbiota from high fat diet mice supplemented with or without mannose to understand the functional differences of supplementation at 3 weeks post weaning and 8 weeks post weaning. Method: Mice were weaned on high fat diet (HFD) or high fat diet with 2% mannose in drinking water (HFDM). RNA from each mouse for each diet group was isolated individually using Ambion RiboPure Bacteria kit (ThermoFisher Scientific). 1 mg cecal RNA each from 8 mice/diet group was pooled to generate 1 pool/diet for library preparation. The quality of total RNA was assessed by the Agilent Bioanalyzer Nano chip (Agilent Technologies). Total RNA was Ribo-depleted using Ribo-Zero Gold rRNA kit (Epidemiology) (Illumina). RNA-Seq library was constructed from the recovered non-ribosomal RNAs using Truseq Stranded total RNA library preparation kit (Illumina) as per the instructions. Multiplexed libraries were pooled and single-end 50-bp sequencing was performed using an Illumina Hiseq 1500. Results: The comparison of transcriptome profiles of mice supplemented with mannose at 3 weeks post weaning and 8 weeks post weaning shows mannose reduced transcript abundance for glycosyl hydrolases and carbohydrate metabolism when supplied at 3 weeks post weaning. Conclusion: The beneficial effects of mannose in responsive mice (3 weeks post weaning) are at least in part due to reduced energy harvest by gut microbes.
Project description:Long-term consumption of erythritol, a widely used sugar substitute, has been associated with increased risks of thrombosis and cardiometabolic diseases. In this study, we investigated the effects and mechanisms of allulose in mitigating these risks compared to erythritol using the clusterProfiler tool. Since a high-fat diet (HFD) is known to enhance platelet aggregation, we compared the pathways related to these processes between groups of mice treated with allulose and those treated with erythritol. While erythritol exacerbated HFD-induced increased platelet aggregation, allulose treatment significantly reduced it. The groups consisted of a normal diet group (ND, with 10% of calories derived from fat), a high-fat diet group (HFD, with 40% of calories from fat), a high-fat diet with 5% allulose supplementation (ALLU), and a high-fat diet with 5% erythritol supplementation (ERY).
Project description:Fat transcriptome patterns associated with heterogeneous metabolic, hormonal and behavioral adaptation to high fat diet feeding in mice