Project description:Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in-depth examination of the genome of ΦPsa374-like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo-electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T=9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage-resistance is overcome by mutations in a tail fiber and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374-like phages that informs their use as antimicrobials against Psa.
Project description:Virulent bacteriophages (or phages) are viruses that specifically infect and lyse a bacterial host. When multiple phages co-infect a bacterial host, the extent of lysis, dynamics of bacteria-phage and phage-phage interactions are expected to vary. The objective of this study is to identify the factors influencing the interaction of two virulent phages with different Pseudomonas aeruginosa growth states (planktonic, an infected epithelial cell line, and biofilm) by measuring the bacterial time-kill and individual phage replication kinetics. A single administration of phages effectively reduced P. aeruginosa viability in planktonic conditions and infected human lung cell cultures, but phage-resistant variants subsequently emerged. In static biofilms, the phage combination displayed initial inhibition of biofilm dispersal, but sustained control was achieved only by combining phages and meropenem antibiotic. In contrast, adherent biofilms showed tolerance to phage and/or meropenem, suggesting a spatiotemporal variation in the phage-bacterial interaction. The kinetics of adsorption of each phage to P. aeruginosa during single- or co-administration were comparable. However, the phage with the shorter lysis time depleted bacterial resources early and selected a specific nucleotide polymorphism that conferred a competitive disadvantage and cross-resistance to the second phage. The extent and strength of this phage-phage competition and genetic loci conferring phage resistance, are, however, P. aeruginosa genotype dependent. Nevertheless, adding phages sequentially resulted in their unimpeded replication with no significant increase in bacterial host lysis. These results highlight the interrelatedness of phage-phage competition, phage resistance and specific bacterial growth state (planktonic/biofilm) in shaping the interplay among P. aeruginosa and virulent phages.
Project description:Here, we investigated the impact of Stx2 phage carriage on Escherichia coli (E. coli) K-12 MG1655 host gene expression. Using quantitative RNA-seq analysis, we compared the transcriptome of naïve MG1655 and the lysogens carrying the Stx2 phage of the 2011 E. coli O104:H4 outbreak strain or of the E. coli O157:H7 strain PA8, which share high degree of sequence similarity.
Project description:References:
1. Xiaomei Zhu, Lan Yin, Leroy Hood, David Galas and Ping Ao, Efficiency, Robustness and Stochasticity of Gene Regulatory networks in Systems biology: Lambda switch as a working example, 2006.
2. Adam Arkin, John Ross and Harley H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells, 1998, Genetics, 149: 1633-1648.
3. GenBank sequence: NC_001416 is the whole genome sequence of phage lambda.
Project description:Genomic material isolated from purified phage YerA41 lysate was shown to contain RNA. YerA41 phage lysate was RNase treated to remove phage-external RNA and total RNA was then isolated from the phage preparate using Qiagen Rneasy mini kit. The isolated RNA was sequenced to elucidate its origin. The results suggested that the RNA originated from intact ribosomes of the host bacterium that contaminated the phage lysate.
Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:To better understand host/phage interactions and the genetic bases of phage resistance in a model system relevant to potential phage therapy, we isolated several spontaneous mutants of the USA300 S. aureus clinical isolate NRS384 that were resistant to phage K. Six of these had a single missense mutation in the host rpoC gene, which encodes the RNA polymerase beta prime subunit. To examine the hypothesis that the mutations in the host RNA polymerase affect the transcription of phage genes, we performed RNA-seq analysis on total RNA samples collected from NRS384 wild-type (WT) and rpoC G17D mutant cultures infected with phage K, at different time points after infection. Infection of the WT host led to a steady increase of phage transcription relative to the host. Our analysis allowed us to define different early, middle, and late phage genes based on their temporal expression patterns and group them into transcriptional units. Predicted promoter sequences defined by conserved -35, -10, and in some cases extended -10 elements were found upstream of early and middle genes. However, sequences upstream of late genes did not contain clear, complete, canonical promoter sequences, suggesting that factors in addition to host RNA polymerase are required for their regulated expression. Infection of the rpoC G17D mutant host led to a transcriptional pattern that was similar to the WT at early time points. However, beginning at 20 minutes after infection, transcription of late genes (such as phage structural genes and host lysis genes) was severely reduced. Our data indicate that the rpoCG17D mutation prevents the expression of phage late genes, resulting in a failed infection cycle for phage K. In addition to illuminating the global transcriptional landscape of phage K throughout the infection cycle, these studies can inform our investigations into the bases of phage K’s control of its transcriptional program as well as mechanisms of phage resistance.
Project description:DDA analysis of phage phiR201 infecting Yersinia enterocolitica using the Uniprot proteomes UP000002908 and UP000000642 as sequence database
Project description:hvKP ATCC43816 and its lytic phage H5 were employed as a phage-antibiotic combination model. Based on the comprehensive characterization of phages, including cryo-electron microscopy, we evaluated the synergic effect of H5 on bacterial killing in vitro when combined with multiple antibiotics, and analyzed the advantages of phage-antibiotic combinations from an evolutionary perspective and proposes a novel PAS mechanism by using ceftazidime as an example.