Project description:Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites via complex biosynthetic enzymatic machinery. The model cyanobacterium Picosynechococcus sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures. The putative biochemistry encoded by the PKS domains suggests that OlsWT will create an olefin with one additional carbon relative to the original substrate (+1 mechanism). The first domain in the multi-module OlsWT protein has homology to fatty acyl-AMP ligases (FAALs) that typically activate free fatty acids prior to creating novel thioester linkages. Paradoxically, unmodified wildtype PCC 7002 is not known to maintain a substantial pool of free fatty acids, and prior work demonstrated conversion of exogenous pentadecanoic acid to 1-octadecene instead of the expected 1-hexadecene. In this study, we developed PCC 7002 as a heterologous host to facilitate the expression and study of Ols proteins in effort to discover their true substrates. Here, we report the successful expression of two Ols homologs from Geminocystis sp. NIES-3709 and Xenococcus sp. PCC 7305 in PCC 7002 that generated 1-heptadecene and 1-pentadecene, respectively. Through the additional deletion of a gene encoding an acyl-acyl carrier protein (ACP) synthetase (Aas) responsible for activation of exogenous free fatty acids, we demonstrated the expected conversion of exogenously provided odd-chain fatty acids to α-olefins containing one additional carbon. These data suggest that short-lived fatty acids liberated from lipid membranes are the Ols substrate. We subsequently confirmed OlsWT activity on octadecanoic acid via in vitro chrome azurol S assay using a purified FAAL module. Collectively, this work clarifies the in vivo substrate of Ols FAAL domains and identifies the FAAL module as a target for future bioengineering to allow access to desired α-olefins.
Project description:Cyanobacteria play pivotal roles in global biogeochemical cycles through oxygenic photosynthesis. To maintain cellular homeostasis, these organisms employ sophisticated acclimation mechanisms to adapt to environmental fluctuations, particularly nitrogen availability. While nitrogen deprivation triggers dormancy, excess ammonium exerts toxic effects on cyanobacteria and other photosynthetic organisms - a phenomenon whose acclimation mechanisms remain poorly understood. TurboID based proximity labeling coupled with quantitative proteomics revealed a robust set of putative Sll0528 interacting proteins.
Project description:Cyanobacteria are oxygenic photoautotrophs responsible for a substantial proportion of nitrogen fixation and primary production in the hydrosphere. Non-nitrogen fixing cyanobacteria, such as Synechocystis sp. PCC 6803, depend of the availability of nitrogenized species to survive. Therefore, an intricate regulatory network around the transcriptional factor NtcA maintains the homeostasis of nitrogen in these organisms. The mechanisms controlling NtcA activity are well understood but a comprehensive study of its regulon is missing in Synechocystis. To define NtcA regulon during the early stage of nitrogen starvation, we have performed chromatin immunoprecipitation followed by sequencing (ChiP-seq), in parallel with genome level transcriptome analysis (RNA-seq). By combining both methods we assigned 51 activated and 28 repressed genes directly by NtcA. Most of direct targets included genes involved in nitrogen and carbon metabolism and photosynthesis. NtcA regulon also included 8 ncRNAs, of which ncr0710, Syr6 and NsiR7 were experimentally validated. Intriguingly, we identified several NtcA intragenic binding sites suggesting that NtcA can modulate transcriptional expression by binding along the whole transcript and not only in the promoter region as previously though. Finally, the transcriptional implication of PipX was analyzed in some NtcA-targets genes, revealing that PipX assists NtcA in the global nitrogen regulation in Synechocystis.
Project description:Cells from the Synechocystis sp. PCC6803 strain were used to identify phosphatidylglycerol-regulated proteins by label-free quantitative shotgun proteomics combining SDS-PAGE prefractionation and data-dependent LC–MS/MS. Acquired data was searched against a composite protein sequence database of cyanobacteria using the Mascot search algorithm. Protein identifications were accepted after rigorous validation criteria of Peptide Prophet, Protein Prophet and requiring at least two unique proteolytic peptides for each protein. Extracted peptide intensity features were used for the label-free comparison of differential protein expression in the mutant cyanobacteria cells.