Project description:Our previous report revealed that protein phosphatase 2A (PP2A), complexed with the B55delta-type regulatory subunit (i.e. Cdc55p), is solely responsible for the outstanding glycolytic activity of sake yeast strains (Watanabe et al., Appl. Environ. Microbiol. 85, e02083-18 (2019). However, how PP2A mediates yeast alcoholic fermentation remains elusive. Thus, RNA-seq analysis of S. cerevisiae cdc55-delta cells at the initial fermentation stage was performed to identify the downstream effector targeting the glycolytic control.
Project description:Transcriptomic study to characterize the interaction of the Penicillium expansum antifungal protein PeAfpA with the the model yeast Saccharomyces cerevisiae. For this, the transcriptome of S. cerevisiae BY4741 strain was compared among samples treated with increasing concentrations of PeAfpA.
Project description:The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control. With prevalent hyper-activation of the mTOR pathway in human cancers, novel strategies to enhance TOR pathway inhibition are highly desirable. We used a yeast-based high-throughput chemical genetic screen to identify small-molecule enhancers of rapamycin (SMERs) and used whole genome expression analysis to identify their mechanisms of action.