Project description:Although gut microbiomes are generally symbiotic or commensal, some of microbiomes become pathogenic under certain circumstances, which is one of key processes of pathogenesis. However, the factors involved in these complex gut-microbe interactions are largely unknown. Here we show that bacterial nucleoside catabolism using gut luminal uridine is required to boost inter-bacterial communications and gut pathogenesis in Drosophila. We found that uridine-derived uracil is required for DUOX-dependent ROS generation on the host side, whereas uridine-derived ribose induces quorum sensing and virulence gene expression on the bacterial side. Importantly, genetic ablation of bacterial nucleoside catabolism is sufficient to block the commensal-to-pathogen transition in vivo. Furthermore, we found that major commensal bacteria lack functional nucleoside catabolism, which is required to achieve gut-microbe symbiosis. The discovery of a novel role of bacterial nucleoside catabolism will greatly help to better understand the molecular mechanism of the commensal-to-pathogen transition in different contexts of host-microbe interactions.
Project description:Leber2015 - Mucosal immunity and gut
microbiome interaction during C. difficile infection
This model is described in the article:
Systems Modeling of
Interactions between Mucosal Immunity and the Gut Microbiome
during Clostridium difficile Infection.
Leber A, Viladomiu M, Hontecillas R,
Abedi V, Philipson C, Hoops S, Howard B, Bassaganya-Riera
J.
PLoS ONE 2015; 10(7): e0134849
Abstract:
Clostridium difficile infections are associated with the use
of broad-spectrum antibiotics and result in an exuberant
inflammatory response, leading to nosocomial diarrhea, colitis
and even death. To better understand the dynamics of mucosal
immunity during C. difficile infection from initiation through
expansion to resolution, we built a computational model of the
mucosal immune response to the bacterium. The model was
calibrated using data from a mouse model of C. difficile
infection. The model demonstrates a crucial role of T helper 17
(Th17) effector responses in the colonic lamina propria and
luminal commensal bacteria populations in the clearance of C.
difficile and colonic pathology, whereas regulatory T (Treg)
cells responses are associated with the recovery phase. In
addition, the production of anti-microbial peptides by inflamed
epithelial cells and activated neutrophils in response to C.
difficile infection inhibit the re-growth of beneficial
commensal bacterial species. Computational simulations suggest
that the removal of neutrophil and epithelial cell derived
anti-microbial inhibitions, separately and together, on
commensal bacterial regrowth promote recovery and minimize
colonic inflammatory pathology. Simulation results predict a
decrease in colonic inflammatory markers, such as neutrophilic
influx and Th17 cells in the colonic lamina propria, and length
of infection with accelerated commensal bacteria re-growth
through altered anti-microbial inhibition. Computational
modeling provides novel insights on the therapeutic value of
repopulating the colonic microbiome and inducing regulatory
mucosal immune responses during C. difficile infection. Thus,
modeling mucosal immunity-gut microbiota interactions has the
potential to guide the development of targeted fecal
transplantation therapies in the context of precision medicine
interventions.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000583.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Acetate, propionate and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received relatively little attention. To investigate this aspect, we infused conscious mice with physiological quantities of stable isotopes [1-13C]acetate, [2-13C]propionate or [2,4-13C2]butyrate directly into the cecum, which is the natural production site in mice, and analyzed their interconversion by the microbiota as well as their metabolism by the host. Cecal interconversion - pointing to microbial cross-feeding - was high between acetate and butyrate, low between butyrate and propionate and almost absent between acetate and propionate. As much as 62% of infused propionate was used in whole-body glucose production, in line with its role as gluconeogenic substrate. Conversely, glucose synthesis from propionate accounted for 69% of total glucose production. The synthesis of palmitate and cholesterol in the liver was high from cecal acetate (2.8% and 0.7%, respectively) and butyrate (2.7% and 0.9%, respectively) as substrates, but low or absent from propionate (0.6% and 0.0%, respectively). Label incorporation due to chain elongation of stearate was approximately 8-fold higher than de novo synthesis of stearate. Microarray data suggested that SCFAs exert only a mild regulatory effect on the expression of genes involved in hepatic metabolic pathways during the 6h infusion period. Altogether, gut-derived acetate, propionate and butyrate play important roles as substrates for glucose, cholesterol and lipid metabolism. Mice were infused in cecum with stably-labelled isotopes of the three main short chain fatty acids or control solution. After 6 hrs, livers were removed and pooled RNA samples were subjected to gene expression profiling.
Project description:Acetate, propionate and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received relatively little attention. To investigate this aspect, we infused conscious mice with physiological quantities of stable isotopes [1-13C]acetate, [2-13C]propionate or [2,4-13C2]butyrate directly into the cecum, which is the natural production site in mice, and analyzed their interconversion by the microbiota as well as their metabolism by the host. Cecal interconversion - pointing to microbial cross-feeding - was high between acetate and butyrate, low between butyrate and propionate and almost absent between acetate and propionate. As much as 62% of infused propionate was used in whole-body glucose production, in line with its role as gluconeogenic substrate. Conversely, glucose synthesis from propionate accounted for 69% of total glucose production. The synthesis of palmitate and cholesterol in the liver was high from cecal acetate (2.8% and 0.7%, respectively) and butyrate (2.7% and 0.9%, respectively) as substrates, but low or absent from propionate (0.6% and 0.0%, respectively). Label incorporation due to chain elongation of stearate was approximately 8-fold higher than de novo synthesis of stearate. Microarray data suggested that SCFAs exert only a mild regulatory effect on the expression of genes involved in hepatic metabolic pathways during the 6h infusion period. Altogether, gut-derived acetate, propionate and butyrate play important roles as substrates for glucose, cholesterol and lipid metabolism.
Project description:Commensal bacteria shape the gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms are not yet known. To reveal the mechanism, we isolated naïve CD4+ T cells from the spleen of C57BL/6 mice and cultured the cells under Treg-inducing condition culture in the presence or absence of butyrate, a metabolite produced by commensal bacteria. Naïve T cells were isolated from spleen and were cultured in the presence of IL-2, TGF-beta and in the presence or absene of Butyrate. RNA was extracted at Day 2.
Project description:Commensal bacteria shapes gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms has not yet been unknown. To reveal the mechanism, we isolated NaM-CM-/ve CD4+ T cells from spleen of C57BL/6 mice and cultured the cells under Treg-inducing condition culture in the presence or absence of butyrate, a metabolite produced by commensal bacteria. NaM-CM-/ve T cells were isolated from spleen and were cultured in the presence of IL-2, TGF-beta and in the presence or absene of Butyrate. RNA was extracted at Day 2
Project description:Commensal bacteria shapes gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms has not yet been unknown. To reveal the mechanism, we isolated Naïve CD4+ T cells from spleen of C57BL/6 mice and cultured the cells under Treg-inducing condition culture in the presence or absence of butyrate, a metabolite produced by commensal bacteria.
Project description:Commensal bacteria shape the gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms are not yet known. To reveal the mechanism, we isolated naïve CD4+ T cells from the spleen of C57BL/6 mice and cultured the cells under Treg-inducing condition culture in the presence or absence of butyrate, a metabolite produced by commensal bacteria.