Project description:Leber2015 - Mucosal immunity and gut
microbiome interaction during C. difficile infection
This model is described in the article:
Systems Modeling of
Interactions between Mucosal Immunity and the Gut Microbiome
during Clostridium difficile Infection.
Leber A, Viladomiu M, Hontecillas R,
Abedi V, Philipson C, Hoops S, Howard B, Bassaganya-Riera
J.
PLoS ONE 2015; 10(7): e0134849
Abstract:
Clostridium difficile infections are associated with the use
of broad-spectrum antibiotics and result in an exuberant
inflammatory response, leading to nosocomial diarrhea, colitis
and even death. To better understand the dynamics of mucosal
immunity during C. difficile infection from initiation through
expansion to resolution, we built a computational model of the
mucosal immune response to the bacterium. The model was
calibrated using data from a mouse model of C. difficile
infection. The model demonstrates a crucial role of T helper 17
(Th17) effector responses in the colonic lamina propria and
luminal commensal bacteria populations in the clearance of C.
difficile and colonic pathology, whereas regulatory T (Treg)
cells responses are associated with the recovery phase. In
addition, the production of anti-microbial peptides by inflamed
epithelial cells and activated neutrophils in response to C.
difficile infection inhibit the re-growth of beneficial
commensal bacterial species. Computational simulations suggest
that the removal of neutrophil and epithelial cell derived
anti-microbial inhibitions, separately and together, on
commensal bacterial regrowth promote recovery and minimize
colonic inflammatory pathology. Simulation results predict a
decrease in colonic inflammatory markers, such as neutrophilic
influx and Th17 cells in the colonic lamina propria, and length
of infection with accelerated commensal bacteria re-growth
through altered anti-microbial inhibition. Computational
modeling provides novel insights on the therapeutic value of
repopulating the colonic microbiome and inducing regulatory
mucosal immune responses during C. difficile infection. Thus,
modeling mucosal immunity-gut microbiota interactions has the
potential to guide the development of targeted fecal
transplantation therapies in the context of precision medicine
interventions.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000583.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Although gut microbiomes are generally symbiotic or commensal, some of microbiomes become pathogenic under certain circumstances, which is one of key processes of pathogenesis. However, the factors involved in these complex gut-microbe interactions are largely unknown. Here we show that bacterial nucleoside catabolism using gut luminal uridine is required to boost inter-bacterial communications and gut pathogenesis in Drosophila. We found that uridine-derived uracil is required for DUOX-dependent ROS generation on the host side, whereas uridine-derived ribose induces quorum sensing and virulence gene expression on the bacterial side. Importantly, genetic ablation of bacterial nucleoside catabolism is sufficient to block the commensal-to-pathogen transition in vivo. Furthermore, we found that major commensal bacteria lack functional nucleoside catabolism, which is required to achieve gut-microbe symbiosis. The discovery of a novel role of bacterial nucleoside catabolism will greatly help to better understand the molecular mechanism of the commensal-to-pathogen transition in different contexts of host-microbe interactions.
Project description:Commensal bacteria shape the gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms are not yet known. To reveal the mechanism, we isolated naïve CD4+ T cells from the spleen of C57BL/6 mice and cultured the cells under Treg-inducing condition culture in the presence or absence of butyrate, a metabolite produced by commensal bacteria. Naïve T cells were isolated from spleen and were cultured in the presence of IL-2, TGF-beta and in the presence or absene of Butyrate. RNA was extracted at Day 2.
Project description:Commensal bacteria shapes gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms has not yet been unknown. To reveal the mechanism, we isolated NaM-CM-/ve CD4+ T cells from spleen of C57BL/6 mice and cultured the cells under Treg-inducing condition culture in the presence or absence of butyrate, a metabolite produced by commensal bacteria. NaM-CM-/ve T cells were isolated from spleen and were cultured in the presence of IL-2, TGF-beta and in the presence or absene of Butyrate. RNA was extracted at Day 2
Project description:Commensal bacteria shape the gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms are not yet known. To reveal the mechanism, we isolated naïve CD4+ T cells from the spleen of C57BL/6 mice and cultured the cells under Treg-inducing condition culture in the presence or absence of butyrate, a metabolite produced by commensal bacteria.
Project description:Commensal bacteria shapes gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms has not yet been unknown. To reveal the mechanism, we isolated Naïve CD4+ T cells from spleen of C57BL/6 mice and cultured the cells under Treg-inducing condition culture in the presence or absence of butyrate, a metabolite produced by commensal bacteria.
Project description:We performed global scale microarray analysis to identify detailed mechanisms by which sodium butyrate (SB) induce cell growth arrest and differentiation of colonic epithelial cells by using an Affymetrix GeneChip system. Colonic epithelial MCE301 cells used in this study were derived from transgenic mice harboring a tsSV40 large T-antigen. Arrested cell growth and a differentiated phenotype accompanying elevations of alkaline phosphatase activity and histone acetylation were observed in the cells treated with 2 mM SB. Of the 22,690 probe sets analyzed, approximately 2,000 genes were down- and up-regulated by a factor of 2.0 or greater in the cells treated with SB. Keywords: sodium butyrate, gene expression, colonic epithelial cell