Project description:To optimize access to nitrogen under limiting conditions, root systems must continuously sense and respond to local or temporal fluctuations in nitrogen availability. In Arabidopsis thaliana and several other species, external N levels that induce only mild deficiency stimulate the emergence of lateral roots and especially the elongation of primary and lateral roots. However, the identity of the genes involved in this coordination remains still largely elusive. In order to identify novel genes and mechanisms underlying nitrogen-dependent root morphological changes, we investigated time-dependent changes in the root transcriptome of Arabidopsis thaliana plants grown under sufficient nitrogen or under conditions that induced mild nitrogen deficiency.
Project description:Broad-host root endophytes establish long-term interactions with a large variety of plants, thereby playing a significant role in natural and managed ecosystems and in evolution of land plants. To exploit plants as living substrates and to establish a compatible interaction with morphologically and biochemically extremely different hosts, endophytes must respond and adapt to different plant signals and host metabolic states. Here we identified host-adapted colonization strategies and host-specific effector candidates of the mutualistic root endophyte Piriformospora indica by a global investigation of fungal transcriptional responses to barley and Arabidopsis at different symbiotic stages. Additionally we examined the role played by nitrogen in these two diverse associations. Cytological studies and colonization analyses of a barley mutant and fungal RNAi strains show that distinct physiological and metabolic signals regulate host-specific lifestyle in P. indica. This is the foundation for exploring how distinct fungal and host symbiosis determinants modulate biotrophy in one host and saprotrophy in another host and, ultimately, gives hints into the mechanisms underlying host adaptation in root symbioses. Arabidopsis and barley roots were inoculated with Piriformospora indica and grown for 14 days. Additionally P. indica was grown on 1/10 PNM medium alone. Samples were taken 3 and 14 dpi (Arabidopsis), 14 dpi (barley) and 3dpi (1/10 PNM). Each experiment was performed in three independent biological repetitions. Piriformospora indica gene expression examined only.
Project description:The root-colonizing fungal endophyte Serendipita indica, formerly known as Piriformospora indica, is well known to promote plant biomass production and stress tolerance of its host plants. Co-cultivation of Arabidopsis thaliana seedlings with the fungus triggers a substantial induction of the growth of the root system. However, the molecular mechanisms by which the fungus promotes plant growth over an extended period of time is still unclear. We here report the comparative analysis of the effect of a mock- and S. indica-infection on wild-type Arabidopsis plants (Col-0) after 2 and 10 days of co-cultivation. Our data provide evidence for the induction of a number of genes that are consistingly induced during the plant–fungus interaction.
Project description:Broad-host root endophytes establish long-term interactions with a large variety of plants, thereby playing a significant role in natural and managed ecosystems and in evolution of land plants. To exploit plants as living substrates and to establish a compatible interaction with morphologically and biochemically extremely different hosts, endophytes must respond and adapt to different plant signals and host metabolic states. Here we identified host-adapted colonization strategies and host-specific effector candidates of the mutualistic root endophyte Piriformospora indica by a global investigation of fungal transcriptional responses to barley and Arabidopsis at different symbiotic stages. Additionally we examined the role played by nitrogen in these two diverse associations. Cytological studies and colonization analyses of a barley mutant and fungal RNAi strains show that distinct physiological and metabolic signals regulate host-specific lifestyle in P. indica. This is the foundation for exploring how distinct fungal and host symbiosis determinants modulate biotrophy in one host and saprotrophy in another host and, ultimately, gives hints into the mechanisms underlying host adaptation in root symbioses.
Project description:Roots of Arabidopsis thaliana do not engage in symbiotic association with mycorrhizal fungi but host taxonomically diverse fungal communities that influence health and disease states. We sequenced the genomes of 41 isolates representative of the A. thaliana root mycobiota for comparative analysis with 79 other plant-associated fungi. We report that root mycobiota members evolved from ancestors having diverse lifestyles and retained diverse repertoires of plant cell wall-degrading enzymes (PCWDEs) and effector-like small secreted proteins. We identified a set of 84 gene families predicting best endophytism, including families encoding PCWDEs acting on xylan (GH10) and cellulose (AA9). These genes also belong to a core transcriptional response induced by phylogenetically-distant mycobiota members in A. thaliana roots. Recolonization experiments with individual fungi indicated that strains with detrimental effects in mono-association with the host not only colonize roots more aggressively than those with beneficial activities but also dominate in natural root samples. We identified and validated the pectin degrading enzyme family PL1_7 as a key component linking aggressiveness of endophytic colonization to plant health.
Project description:The recent release of a large number of genomes from ectomycorrhizal, orchid mycorrhizal and root endophytic fungi have provided deep insight into fungal lifestyle-associated genomic adaptation. Comparative analyses of symbiotic fungal taxa showed that similar outcomes of interactions in distant related root symbioses are examples of convergent evolution. The order Sebacinales represents a sister group to the Agaricomycetes (Basidiomycota) that is comprised of ectomycorrhizal, ericoid-, orchid- mycorrhizal, root endophytic fungi and saprotrophs (Oberwinkler et al., 2013). Sebacinoid taxa are widely distributed from arctic to temperate to tropical ecosystems and are among the most common and species-rich groups of ECM, OM and endophytic fungi (Tedersoo et al., 2012, Tedersoo et al., 2010, Oberwinkler et al., 2013). The root endophyte Piriformospora indica and the orchid mycorrhizal fungus S. vermifera (MAFF 305830) are non-obligate root symbionts which were shown to be able to interact with many different experimental hosts, including the non-mycorrhizal plant Arabidopsis thaliana. These two fungi display similar colonization strategies in barley and in Arabidopsis and the ability to establish beneficial interactions with different hosts (Deshmukh et al., 2006). Colonization of the roots by P. indica and S. vermifera results in enhanced seed germination and biomass production as well as increased resistance against biotic and abiotic stresses in its experimental hosts, including various members of the Brassicaceae family, barley, Nicotiana attenuata and switchgrass (Ghimire, 2011, Ghimire et al., 2009, Ghimire et al., 2011, Waller et al., 2008, Barazani et al., 2007, Deshmukh et al., 2006). Microarray experiments were performed to identify and characterize conserved sebacinoid genes as key determinants in the Sebacinales symbioses.
Project description:The commonly observed increased heavy metal tolerance of ectomycorrhized plants is usually linked with the protective role of the fungal hyphae covering colonized plant root tips. However, the molecular effects of ECM-triggered increases in plant mass and the ‘dilution effect’ are unknown. Here, we examined Populus × canescens microcuttings inoculated with the Paxillus involutus isolate, which triggered an increase in poplar growth despite successful colonization of only 1.9% ± 0.8 of root tips. Analyzed plants grown for 6 weeks in agar medium enriched with 0.75 mM Pb(NO3)2 lacked a protective fungal biofilter. In minimally colonized ‘bare’ roots, the proteome response to Pb was similar to that in noninoculated plants (e.g., higher abundances of PM- and V-type H+ 31 ATPases and lower abundance of ribosomal proteins). However, the more intensive activation of molecular processes leading to Pb sequestration or redirection of the root metabolic flux into amino acid and Pb chelate (phenolic and citrate) biosynthesis coexisted with lower Pb uptake compared to that in controls. The molecular Pb response of inoculated roots was more intense and effective than that of noninoculated roots in poplars.
Project description:The root-colonizing fungal endophyte Serendipita indica, formerly known as Piriformospora indica, is well known to promote plant biomass production and stress tolerance of its host plants. Moreover, previous studies highlighted an important impact of the fungus on auxin homeostasis during the infection of Arabidopsis thaliana plants. Auxin is a key determinant of plant growth, including the growth of the root system. Auxin overproducing mutants, like for instance YUC9oe (Hentrich et al., 2013 Plant J.), show a pronounced root phenotype that can be restored by the co-cultivation with S. indica. We here report the comparative analysis of the effect of a mock- and S. indica-infection on both wild-type Arabidopsis plants (Col-0) and YUC9 overexpressing mutants. Our data provide evidence for the induction of GRETCHEN HAGEN 3 (GH3) genes that are involved in conjugating active free indole-3-acetic acid with amino acids. The fungus triggered induction GH3s is suggested to be involved in affecting the cellular auxin homeostasis.
Project description:Root branching in response to changes in nitrogen status in the soil, is a dramatic example of the plant’s remarkable developmental plasticity. In recent work we investigated the genetic architecture of developmental plasticity, combining phenoclustering and genome-wide association studies in 96 Arabidopsis thaliana ecotypes with expression profiling in 7 ecotypes, to characterise natural variation in root architectural plasticity at the phenotypic, genetic, and transcriptional levels. This series contains the microarray expression data for 7 ecotypes that represent a range of root branching strategies. We used microarrays to detail the global programme of gene expression involved in the plants response to nitrogen in the root and identified distinct classes of up- and down-regulated genes in the seven different Arabidopsis ecotypes during this process. The whole experiment was carried out in triplicate with 42 chips in total (14 experiments). The nitrogen response in seven Arabidopsis thaliana ecotype (Col0, Kas2, NFA8, SQ8, TAMM27, Ts5, Var2-1) whole roots was assayed using Affymetrix microarrays. Seedlings were grown hydroponically in low nitrogen for 12 days, then 5mM KNO3 was used as a nitrogen treatment for 2 hours with 5mM KCl used as a control treatment for the same length of time. At the end of the treatment time roots were harvested and flash-frozen in liquid nitrogen for subsequent RNA extraction. For *Probe_Elements_Removed* file descriptions, please see the Sample records' "Data processing" annotations.