Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
Project description:Consumer-resource interactions are a central issue in evolutionary and community ecology because they play important roles in selection and population regulation. Most consumers encounter resource variation at multiple scales, and respond through phenotypic plasticity in the short term or evolutionary divergence in the long term. The key traits for these responses may influence resource acquisition, assimilation and/or allocation. To identify candidate genes, we experimentally assayed genome-wide gene expression in pond and lake Daphnia ecotypes exposed to alternate resource environments. One was a simple, high-quality laboratory diet, Ankistrodesmus falcatus. The other was the complex natural seston from a large lake. In temporary ponds, Daphnia generally experience high-quality, abundant resources, whereas lakes provide low-quality, seasonally shifting resources that are chronically limiting. For both ecotypes, we used replicate clones drawn from a number of separate populations. We compared gene expression in whole Daphnia pulex that had been raised in the lab for 10 days, and then exposed to alternate resource environments for 24 hours. One resource environment was a 24 hour continuation of the lab resource, a satiating level of Ankistrodesmus falcatus. The alternate environment was the natural seston present in the epilimnion of Lake Murray, South Carolina. Two ecotypes were analyzed, one adapted to large lakes, and one adapted to temporary ponds. For each ecotype, eight replicate clones were used. Clones of the lake ecotype were isolated from eight independent lakes, clones of the pond ecotype were isolated from six different ponds. The total number of arrays is 16 (8 replicate clones x 2 ecotypes) x 2 resource environments). Total RNA was extracted from eight whole organisms pooled together. Pools were then converted to cDNA and labelled with a single round of amplification. For array hybridizations, samples from the two resource environments were paired for each clone, and dyes were swapped across clones.
Project description:This study aims to explore the relationship between the respiratory virome, specifically bacteriophages, HERV and the host response in ARDS and to assess their value in predicting the prognosis of ARDS.
Project description:Proteomic measurements for samples from 5 outdoor algal ponds over a time series; ponds were sampled during the fall of 2015. Samples were digested with trypsin, then analyzed by LC-MS/MS. Data was searched with MS-GF+ using PNNL's DMS processing pipeline against FASTA files compiled from ponds sequenced metagenomes and proteomes of dominating algae Nannochloropsis salina and Phaeodactylum tricornutum.
Project description:Polynucleobacter asymbioticus strain QLW-P1DMWA-1T represents a group of highly successful heterotrophic planktonic bacteria, dwelling in freshwater systems (lakes, ponds, and streams) across all climatic zones and across all continents. This includes habitats characterised by strongly fluctuating environmental conditions. So the experiments were designed to mimick winter and summer scenarios with additional impact of UV irradiation. Comparative transcriptomic studies were conducted to analyse gene-expression levels in contrasting experimental conditions. Overall, molecular candidates were revealed that may contribute in rapid acclimatisation of this strain in their immediate environment.