Project description:In this work, a characterization of the secretome of the alkane utilizing bacteria Tsukamurella tyrosinosolvens PS2 was carried out. capable of utilizing alkanes as the sole source of carbon and energy was carried out. The cell-free supernatant of the strain PS2 was analyzed during growth on hexadecane or sucrose. The analysis was conducted using timsTOF instrument.
Project description:Purpose: Examining the transcriptome of human gut bacteria that grow on seaweed polysaccharides as a sole carbon source Methods: Strains were grown on 5 mg/ml seaweed polysaccharides (carrageenan, agarose and/or poprhyran respective to strain) or galactose as a sole carbon source in vitro. Fold change was calculated as seaweed polysaccharide over galactose with n=2 biological replicates. Once cells reached an optical density corresponding to mid-log phase growth, RNA was isolated and rRNA depleted. Samples were multiplexed for sequencing on the Illumina HiSeq platform at the University of Michigan Sequencing Core. Data was analyzed using Arraystar software (DNASTAR, Inc.) Genes with significant up- or down-regulation were determined by the following criteria: genes with an average fold-change >10-fold and with both biological replicates with a normalized expression level >1% of the overall average RPKM expression level. READS WERE ANALYZED .......GABRIEL FILL IN Results: We identified novel polysaccharide utiilization loci in 5 strains of human gut bacteria
Project description:This study develops a pipeline for high-level production of the reverse antibiotic nybomycin from three seaweed species: Himanthalia elongata, Palmaria palmata, and Ulva lactuca. Screening Streptomyces strains identified S. explomaris, a marine species, as the best host to express the nybomycin gene cluster. The accumulated low yields in artificial seawater with brown seaweed hydrolysate. Gene expression analysis revealed downregulation of precursor supply pathways and upregulation of repressors, limiting biosynthesis. Metabolic engineering addressed these bottlenecks, leading to a superior S. explomaris mutant achieving 57 mg/L, a five-fold increase as compared to reported yields. The strain effectively valorized commercial seaweed hydrolysates, highlighting marine feedstocks' potential for antibiotic production.
2025-03-10 | GSE291039 | GEO
Project description:Identification of Soil Bacteria Capable of Utilizing a Corn Ethanol Fermentation Byproduct
Project description:Diazotrophs provide the main source of reactive nitrogen to the ocean, sustaining primary productivity and CO2 uptake. Climate change is raising temperatures, decreasing pH and reducing nutrient availability. How microbes respond to these changes is largely unexplained. Similarly, the role of DOM in the growth and survival of certain diazotrophic organisms is poorly understood. Moreover, growing evidence indicates some diazotrophs are capable of utilizing distinct DOM compounds via osmotrophy providing them with additional metabolic plasticity and ecological advantages compared to other non-diazotrophic microbes. We aimed to understand how osmotrophy could modify carbon uptake and alleviate energy stress in diazotrophs under ongoing climate change perturbations. We hypothesized that Crocosphaera preferentially uses DOM when labile as a carbon source in present pH conditions, as compared to future more acidic scenarios with higher access to inorganic carbon. Alternatively, the lower pH may cause Crocosphaera to be energy limited when trying to maintain intracellular homeostasis which would favour DOM uptake as an extra source of energy.
Project description:Laminaria digitata is a brown seaweed with prebiotic properties that has the potential to improve the response of weaned piglets to nutritional stress. However, its cell wall polysaccharides are not digested by the endogenous enzymes of monogastric animals. Alginate lyase has shown promise in degrading them under in vitro conditions. The objective of this study is to evaluate the effect of a 10% incorporation of L. digitata, and alginate lyase supplementation on the ileum proteome and metabolome, in a hypothesis generating approach. Control piglets increased the use of glucose as an enteric source of energy, demonstrated by the higher abundance of PKLR and PCK2 proteins and the lower concentration of glucose found in the tissue. Furthermore, seaweed inclusion promoted an increased abundance of proteins related with improved enterocyte structural integrity (ACTBL2, CRMP1, FLII, EML2 and MYLK), peptidase activity (NAALADL1, CAPNS1) and anti-inflammatory activity (C3), demonstrating improved intestinal function. Coherently, they lowered the abundance of apoptosis (ERN2) and proteolytic (DPP4) proteins. Alginate lyase supplementation seems to magnify the baseline effects of feeding the seaweed alone, by increasing the number of differential proteins in the same pathways, possibly as a consequence of increased intracellular nutrient release.