Project description:The plant hemicellulose xyloglucan (XyG) is secreted from the roots of numerous plant species, including cereals, and contributes towards soil aggregate formation in terrestrial systems. Whether XyG represents a key nutrient for plant-associated bacteria is unclear. The phylum Bacteroidota are abundant in the plant microbiome and provide several beneficial functions for their host. However, the metabolic and genomic traits underpinning their success remain poorly understood. Here, we employed whole-cell proteomics to determine the molecular mechanisms responsible for xyloglucan utilisation in two model Flavobacterium species, Flavobacterium johnsoniae DSM2064 and Flavobacterium sp. OSR005. We identified the occurrence of a distinct and conserved gene cluster, referred to as the Xyloglucan Utilisation Loci (XyGUL). Flavobacterium XyGUL is a hybrid of the molecular machinery found in gut Bacteroides spp., Cellvibrio japonicus, and the plant pathogen Xanthomonas. Combining protein biochemistry, computational modelling and phylogenetics, we identified a mutation in the enzyme required for initiating hydrolysis of the XyG polysaccharide, an outer membrane endoxyloglucanase glycoside hydrolase family 5 subfamily 4 (GH5_4), which enhances activity towards XyG.
Project description:Columnaris disease is a prevalent disease in freshwater environments worldwide caused by the ubiquitous aquatic bacterium Flavobacterium species. Adhesion to the external mucosal surfaces of fishes is the initial stage of infection, and the gills specifically have been identified as both a primary target and release site for this pathogen. Previous research has indicated that a predominant US aquaculture product, the hybrid striped bass (Morone chrysops x M. saxatilis), is more susceptible to infection with Flavobacterium columnare (covae) than the maternal white bass (M. chrysops) parental species. Therefore, to further elucidate the differences between these fish we conducted a transcriptomic profiling study examining the differences of gene expression in gill mucosal tissue over time after exposure to F. covae isolate LSU-066-04. Combined with previous work, these data provide a greater understanding of host immune response to a common pathogen in moronids.
Project description:Flavobacterium johnsoniae is a free-living member of the Bacteroidota phylum found in soil and water. It is frequently used as a model species for studying a type of gliding motility dependent on the type IX secretion system (T9SS). O-glycosylation has been reported in several Bacteroidota species and the O-glycosylation of S-layer proteins in Tannerella forsythia was shown to be important for certain virulence features. In this study we characterised the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The structure of the major glycan was found to be a hexasaccharide with the sequence Hex–(Me-dHex)–Me-HexA–Pent–HexA–Me-HexNAcA. Bioinformatic localisation of the glycoproteins determined 68 inner membrane proteins, 60 periplasmic proteins, 26 outer membrane proteins, 57 lipoproteins and 9 proteins secreted by the T9SS. The glycosylated sites were predominantly located in the periplasm where they are postulated to be beneficial for protein folding/stability. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated.