Project description:Transcriptional profiling of marine ammonia oxidizing archaea Nitrosopumilus maritimus cells comparing exponential phase control cells with cells under 24 hours starvation and with cells under recovery after 24 hours starvation. Goal was to determine the effects of global transcriptional responses of N. maritimus cells under ammonia starvation and recovery conditions.
Project description:Oxidative Stress Protection and the Repair Response To Hydrogen Peroxide in the Hyperthermophilic Archaeon Pyrococcus furiosus Pyrococcus furiosus is a shallow marine, anaerobic archaeon that grows optimally at 100°C. Addition of H2O2 (0.5 mM) to a growing culture resulted in cessation of growth with a 2 hour lag before normal growth resumed. Whole genome transcriptional profiling revealed that the main response occurs within 30 min of peroxide addition, with the up-regulation of 62 open reading frames (ORFs), 36 of which are part of 10 potential operons. More than half of the up-regulated ORFs are of unknown function while some others encode proteins that are involved potentially in sequestering iron and sulfide, in DNA repair and in generating NADPH. This response is thought to involve primarily damage repair rather than protection, since cultures exposed to sub-toxic levels of H2O2 were not more resistant to the subsequent addition of H2O2 (0.5 – 5.0 mM). Consequently, there is little if any induced protective response to peroxide, rather, the organism maintains a constitutive protective mechanism involving high levels of oxidoreductase-type enzymes such as superoxide reductase, rubrerythrin and alkyl hydroperoxide reductase I. The related hyperthermophiles P. woesei and Thermococcus kodakaraensis were more sensitive to peroxide than P. furiosus, apparently due to the lack of several of its peroxide-responsive ORFs.
Project description:High representation by ammonia-oxidizing archaea (AOA) in marine systems is consistent with their high affinity for ammonia, efficient carbon fixation, and copper (Cu)-centric respiratory system. However, little is known about their response to nutrient stress. We therefore used global transcriptional and proteomic analyses to characterize the response of a model AOA, Nitrosopumilus maritimus SCM1, to ammonia starvation, Cu limitation, and Cu excess. Most predicted protein-coding genes were transcribed in exponentially growing cells, and of ~74% detected in the proteome, ~6% were modified by N-terminal acetylation. The general response to ammonia starvation and Cu-stress was down-regulation of genes for energy generation and biosynthesis. Cells rapidly depleted transcripts for the A and B subunits of ammonia monooxygenase (AMO) in response to ammonia starvation, yet retained relatively high levels of transcripts for the C subunit. Thus, similar to ammonia-oxidizing bacteria, selective retention of amoC transcripts during starvation appears important for subsequent recovery, and also suggests that AMO subunit transcript ratios could be used to assess the physiological status of marine populations. Unexpectedly, cobalamin biosynthesis was upregulated in response to both ammonia starvation and Cu-stress, indicating the importance of this cofactor in retaining functional integrity during times of stress.