Project description:This project is about the proteomic and phosphoproteomic analyses of phage JSS1 or JSS1Δ004 infected Salmonella strains. AD032TQ is proteomes of phage JSS1 or JSS1Δ004 infected S. enterica serovar Cerro 87. AD032TPST is phosphoproteome of phage JSS1 or JSS1Δ004 infected S. enterica serovar Cerro 87. AE065TQ is proteomes of phage JSS1 or JSS1Δ004 infected CX1, a S. enterica serovar Cerro 87 dndFGH deficient strain, harboring a plasmid expressing DndFGH from Escherichia coli B7A. AE065TPST is phosphoproteome of phage JSS1 or JSS1Δ004 infected CX1 harboring a plasmid expressing DndFGH from E. coli B7A.
Project description:This project is about the proteomic and phosphoproteomic analyses of phage JSS1 or JSS1Δ004 infected Salmonella strains. AD032TQ is proteomes of phage JSS1 or JSS1Δ004 infected S. enterica serovar Cerro 87. AD032TPST is phosphoproteome of phage JSS1 or JSS1Δ004 infected S. enterica serovar Cerro 87. AE065TQ is proteomes of phage JSS1 or JSS1Δ004 infected CX1, a S. enterica serovar Cerro 87 dndFGH deficient strain, harboring a plasmid expressing DndFGH from Escherichia coli B7A. AE065TPST is phosphoproteome of phage JSS1 or JSS1Δ004 infected CX1 harboring a plasmid expressing DndFGH from E. coli B7A.
Project description:This project is about the proteomic and phosphoproteomic analyses of phage JSS1 or JSS1Δ004 infected Salmonella strains. AD032TQ is proteomes of phage JSS1 or JSS1Δ004 infected S. enterica serovar Cerro 87. AD032TPST is phosphoproteome of phage JSS1 or JSS1Δ004 infected S. enterica serovar Cerro 87. AE065TQ is proteomes of phage JSS1 or JSS1Δ004 infected CX1, a S. enterica serovar Cerro 87 dndFGH deficient strain, harboring a plasmid expressing DndFGH from Escherichia coli B7A. AE065TPST is phosphoproteome of phage JSS1 or JSS1Δ004 infected CX1 harboring a plasmid expressing DndFGH from E. coli B7A.
Project description:This project is about the proteomic and phosphoproteomic analyses of phage JSS1 or JSS1Δ004 infected Salmonella strains. AD032TQ is proteomes of phage JSS1 or JSS1Δ004 infected S. enterica serovar Cerro 87. AD032TPST is phosphoproteome of phage JSS1 or JSS1Δ004 infected S. enterica serovar Cerro 87. AE065TQ is proteomes of phage JSS1 or JSS1Δ004 infected CX1, a S. enterica serovar Cerro 87 dndFGH deficient strain, harboring a plasmid expressing DndFGH from Escherichia coli B7A. AE065TPST is phosphoproteome of phage JSS1 or JSS1Δ004 infected CX1 harboring a plasmid expressing DndFGH from E. coli B7A.
Project description:The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 and an isogenic ramA gene knockout mutant which contained ramA upon an IPTG-inducible over-expression plasmid.
Project description:This study compares the global transcriptomes of highly pathogenic bovine-adapted S. enterica serovar Dublin and the less pathogenic bovine-adapted serovar Cerro during interactions with bovine epithelial cells, to identify genes that impact serovar-related outcomes of S. enterica infections in dairy animals
Project description:SrfJ is an effector of the type III secretion systems of the Gram-negative intracellular pathogen Salmonella enterica serovar Typhimurium. To study the effects of this effector on global gene expression in host cells, we have expressed SrfJ on human HeLa cells through transient transfection. The comparison with HeLa cells transfected with a plasmid not expressing SrfJ, revealed a number of genes that are differentially expressed when SrfJ is present.
Project description:Background: The rapid evolution and dissemination of mobilized colistin resistance gene (mcr) family has revealed as a severe threat to the global public health. Nevertheless, dramatic reduction in the prevalence of mcr-1, the major member of mcr family, was observed after the withdrawal of colistin in animal fodder in China since 2017, demonstrating that colistin acts as a selective stress to promote the dissemination of mcr-1. As the second largest lineage, mcr-3 was firstly discovered in 2017 and has been identified from numerous sources. However, whether the spreading of mcr-3 is driven by colistin remains unknown. Methods: To this end, we investigated the global prevalence of mcr-3 from 2005 to 2022 by an up-to-date systematic review, along with a nation-wide epidemiological study to establish the change of mcr-3 prevalence in China before and after 2017. To investigate the fitness cost imposed by MCR-3 upon bacterial host, in vitro and in vivo competitive assays were employed, along with morphological study and fluorescent observation. Moreover, by replacing non-optimal codons with optimal codons, synonymous mutations were introduced into the 5’-coding region of mcr-3 to study mechanisms accounting for the distinct fitness cost conferred by MCR-1 and MCR-3. Furthermore, by combining AlphaFold and molecular dynamics (MD) simulation, we provided a complete characterization on the putative lipid A binding pocket localized at the linker domain of MCR-3. Crucially, inhibitors targeting at the putative binding pocket of MCR-1 or MCR-3 were identified from small molecules library using the pipeline of virtual screening. Findings: The global prevalence of mcr-3 increased continuously from 2005 to 2022. The average prevalence was 0.18% during 2005-2014 and rapidly increased to 3.41% during 2020-2022. The prevalence of mcr-3 in China increased from 0.79% in 2016 to 5.87% in 2019. We found that the fitness of mcr-3-bearing E. coli and empty plasmid control was comparable but higher than that of mcr-1-positive strain. Although the putative lipid A binding pocket of MCR-3 was similar to that of in MCR-1, mcr-3 occupies remarkable codon bias at the 5’-end of coding region that disrupted the stability of mRNA, further reduced its protein expression in E. coli, resulting in the low fitness burden of bacterial host. Moreover, the 5’-end codon usage frequency appeared as a critical factor related with the evolution of mcr family. Furthermore, based on the similar lipid A binding pocket among MCR family protein, we identified three novel MCR inhibitors targeting at such pocket by screening from small-molecule library, which effectively restored the colistin susceptibility of mcr-bearing E. coli. Interpretation: For the first time, we found that the prevalence of mcr-3 increased continuously during 2016-2019 in China, demonstrating that the withdrawal of colistin in husbandry failed to prevent the dissemination of mcr-3. Our study evidenced that the 5’-end codon bias appeared as a crucial regulator upon the fitness cost conferred by horizontally transferred genes. Most importantly, the putative lipid A binding pocket verified from current study was a promising target site for designing inhibitors against mcr-positive strains.