Project description:Acetic acid bacteria are obligately aerobic alphaproteobacteria that have a unique ability to incompletely oxidize various alcohols and sugars to organic acids. The ability of these bacteria to incompletely oxidize ethanol to acetate has been historically utilized for vinegar production. The mechanism of switching between incomplete oxidation and assimilatory oxidation and the control of energy and carbon metabolism in acetic acid bacteria are not fully understood. To understand the physiology and molecular biology of acetic acid bacteria better, we determined the draft genome sequence of Acetobacter aceti NBRC 14818, which is the type strain of the genus. Based on this draft genome sequence, the transcriptome profiles in A. aceti cells grown on ethanol, acetate, glucose, or mix of ethanol and glucose was determined by using NimbleGen Prokaryotic Expression array (4x72K).
Project description:The draft genome of L. sativa (lettuce) cv. Tizian was sequenced in two Illumina sequencing runs, mate pair and shotgun. This entry contains the RAW sequencing data.
Project description:Complete genome sequencing of antimicrobial-resistant bacteria isolated from environment including aquatic animals and plants in Japan
Project description:Whole genome sequencing of antimicrobial-resistant bacteria isolated from environment including aquatic animals and plants in Japan
Project description:Six bacterial genomes, Geobacter metallireducens GS-15, Chromohalobacter salexigens, Vibrio breoganii 1C-10, Bacillus cereus ATCC 10987, Campylobacter jejuni subsp. jejuni 81-176 and Campylobacter jejuni NCTC 11168, all of which had previously been sequenced using other platforms were re-sequenced using single-molecule, real-time (SMRT) sequencing specifically to analyze their methylomes. In every case a number of new N6-methyladenine (m6A) and N4-methylcytosine (m4C) methylation patterns were discovered and the DNA methyltransferases (MTases) responsible for those methylation patterns were assigned. In 15 cases it was possible to match MTase genes with MTase recognition sequences without further sub-cloning. Two Type I restriction systems required sub-cloning to differentiate their recognition sequences, while four MTases genes that were not expressed in the native organism were sub-cloned to test for viability and recognition sequences. No attempt was made to detect 5-methylcytosine (m5C) recognition motifs from the SMRT sequencing data because this modification produces weaker signals using current methods. However, all predicted m6A and m4C MTases were detected unambiguously. This study shows that the addition of SMRT sequencing to traditional sequencing approaches gives a wealth of useful functional information about a genome showing not only which MTase genes are active, but also revealing their recognition sequences. Examination of the methylomes of six different strains of bacteria using kinetic data from single-molecule, real-time (SMRT) sequencing on the PacBio RS.