Project description:Interferon-stimulated genes (ISGs) form the backbone of innate immune system and are pivotal for limiting intra- and intercellular viral replication and spread. We conducted a mass spectrometry–based survey to understand the fundamental organization of the innate immune system and to explore molecular functions of individual ISGs. We identified interactions between 104 ISGs and 1,401 cellular binding partners engaging in 2,734 high-confidence interactions. 90% of these interactions are unreported so far, and our survey therefore illuminates a far wider activity spectrum of ISGs than currently known. Integration of the resulting ISG-interaction network with published datasets and functional studies allowed us to identify novel regulators of immunity and immune system–related processes. Given the extraordinary robustness of the innate immune system, this ISG network may serve as a blueprint for therapeutic targeting of cellular systems in order to efficiently fight viral infections.
Project description:Groups of samples used in Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system profiles.
Project description:The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache. How pain and neuro-immune interactions impact meningeal host defenses is unclear. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system (CNS), affecting over one million people a year. Here we find that Nav1.8+ neuron signaling to immune cells in the meninges via the neuropeptide calcitonin gene-related peptide (CGRP) exacerbates bacterial meningitis. Nociceptor ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors via Pneumolysin to release CGRP, which acts through its receptor RAMP1 on meningeal macrophages to inhibit chemokine expression, neutrophil recruitment and antimicrobial defenses. Macrophage-specific RAMP1 deficiency or blockade of RAMP1 signaling enhanced immune responses and bacterial clearance in meninges and brain. Therefore, targeting a neuro-immune axis in the meninges can enhance host defenses and may be a potential treatment for bacterial meningitis.
Project description:The human body is host to large numbers of bacteriophages (phages)⁻a diverse group of bacterial viruses that infect bacteria. Phage were previously regarded as bystanders that only impacted immunity indirectly via effects on the mammalian microbiome. However, it has become clear that phages also impact immunity directly, in ways that are typically anti-inflammatory. Phages can modulate innate immunity via phagocytosis and cytokine responses, but also impact adaptive immunity via effects on antibody production and effector polarization. Phages may thereby have profound effects on the outcome of bacterial infections by modulating the immune response. In this review we highlight the diverse ways in which phages interact with human cells. We present a computational model for predicting these complex and dynamic interactions. These models predict that the phageome may play important roles in shaping mammalian-bacterial interactions.
Project description:The maintenance of intestinal homeostasis is a fundamental process critical for organismal integrity. Sitting at the interface of the gut microbiome and mucosal immunity, adaptive and innate lymphoid populations regulate the balance between commensal micro-organisms and pathogens. Checkpoint inhibitors (CPI), particularly those targeting the CTLA-4 pathway, disrupt this fine balance and can lead to inflammatory bowel disease (IBD) and immune checkpoint colitis (CPI-C). Here, we show that CTLA-4 is expressed by innate lymphoid cells (ILC) and that its expression is regulated by ILC subset-specific cytokine cues in a microbiota-dependent manner. Genetic deletion or antibody blockade of CTLA-4 demonstrates that this pathway plays a key role in intestinal homeostasis and is conserved in human IBD and CPI-induced colitis (CPI-C). We propose that this population of CTLA-4-positive ILC may serve as an important target for the treatment of idiopathic and iatrogenic intestinal inflammation.
Project description:Kilian2024 - Immune cell dynamics in Cue-Induced Extended Human Colitis Model
Single-cell technologies such as scRNA-seq and flow cytometry provide critical insights into immune cell behavior in inflammatory bowel disease (IBD). However, integrating these datasets into computational models for dynamic analysis remains challenging. Here, Kilian et al., (2024) developed a deterministic ODE-based model that incorporates these technologies to study immune cell population changes in murine colitis. The model parameters were optimized to fit experimental data, ensuring an accurate representation of immune cell behavior over time. It was then validated by comparing simulations with experimental data using Pearson’s correlation and further tested on independent datasets to confirm its robustness. Additionally, the model was applied to clinical bulk RNA-seq data from human IBD patients, providing valuable insights into immune system dynamics and potential therapeutic strategies.
Figure 4c, obtained from the simulation of human colitis model is highlighted here.
This model is described in the article:
Kilian, C., Ulrich, H., Zouboulis, V.A. et al. Longitudinal single-cell data informs deterministic modelling of inflammatory bowel disease. npj Syst Biol Appl 10, 69 (2024). https://doi.org/10.1038/s41540-024-00395-9
Abstract:
Single-cell-based methods such as flow cytometry or single-cell mRNA sequencing (scRNA-seq) allow deep molecular and cellular profiling of immunological processes. Despite their high throughput, however, these measurements represent only a snapshot in time. Here, we explore how longitudinal single-cell-based datasets can be used for deterministic ordinary differential equation (ODE)-based modelling to mechanistically describe immune dynamics. We derived longitudinal changes in cell numbers of colonic cell types during inflammatory bowel disease (IBD) from flow cytometry and scRNA-seq data of murine colitis using ODE-based models. Our mathematical model generalised well across different protocols and experimental techniques, and we hypothesised that the estimated model parameters reflect biological processes. We validated this prediction of cellular turnover rates with KI-67 staining and with gene expression information from the scRNA-seq data not used for model fitting. Finally, we tested the translational relevance of the mathematical model by deconvolution of longitudinal bulk mRNA-sequencing data from a cohort of human IBD patients treated with olamkicept. We found that neutrophil depletion may contribute to IBD patients entering remission. The predictive power of IBD deterministic modelling highlights its potential to advance our understanding of immune dynamics in health and disease.
This model was curated during the Hackathon hosted by BioMed X GmbH in 2024.