Project description:We investigated the transcriptomes and differential gene expression at the Arabidopsis shoot meristem during flowering using INTACT reporter lines. Samples were collected in four biological replications.
Project description:Several pathways conferring environmental flowering responses in Arabidopsis converge on developmental processes that mediate floral transition in the shoot apical meristem. Many characterized mutations disrupt these environmental responses, but downstream developmental processes have been more refractory to mutagenesis. We constructed a quintuple mutant impaired in several environmental pathways and showed that it possesses severely reduced flowering responses to changes in photoperiod and ambient temperature. RNA-seq analysis of the quintuple mutant showed that the expression of genes encoding gibberellin biosynthesis enzymes and transcription factors involved in the age pathway correlates with flowering. Mutagenesis of the quintuple mutant generated two late-flowering mutants, quintuple ems 1 (qem1) and qem2. The mutated genes were identified by isogenic mapping and transgenic complementation. The qem1 mutant was an allele of ga20ox2, confirming the importance of gibberellin for flowering in the absence of environmental responses. By contrast, the qem2 mutation is in CHROMATIN REMODELING 4 (CHR4), which has not been genetically implicated in floral induction. Using co-immunoprecipitation, RNA-seq and ChIP-seq, we show that CHR4 interacts with transcription factors involved in floral meristem identity and affects expression of key floral regulators. We conclude that CHR4 mediates the response to endogenous flowering pathways in the inflorescence meristem to promote floral identity.
Project description:Several pathways conferring environmental flowering responses in Arabidopsis converge on developmental processes that act in the shoot apical meristem to mediate the floral transition. Many characterized mutations impair environmental flowering responses, however downstream developmental processes have been more refractory to mutagenesis. We constructed a quintuple mutant in which several environmental pathways are impaired and showed that its flowering responses to changes in photoperiod and ambient temperature are almost abolished. Analysis of the quintuple mutant by RNA-seq showed that expression of gibberellin biosynthetic genes and transcription factors that contribute to the age pathway correlate with flowering. Mutagenesis of the quintuple mutant recovered two late-flowering mutants, quintuple ems 1 (qem1) and qem2. The causal genes were identified by isogenic mapping and transgenic complementation. The qem1 mutation was an allele of ga20ox2, confirming the importance of gibberellin for flowering in the absence of environmental responses. By contrast, qem2 is in CHROMATIN REMODELING 4 (CHR4), which was not previously genetically implicated in floral induction. Using co-immunoprecipitation, RNA-seq and ChIP-seq, we show that CHR4 interacts with transcription factors involved in floral meristem identity and affects expression of key floral regulators. We conclude that CHR4 plays important roles in the inflorescence meristem to promote floral identity.
Project description:Flowering of Arabidopsis is induced at the shoot meristem by environmental and endogenous signals. FLOWERING LOCUS T (FT) protein is a systemic signal that induces rapid flowering in response to long summer days (LDs) whereas gibberellin (GA) growth regulators trigger flowering by default in short days (SDs). Mutations in the bZIP transcription factor FDP, which physically interacts to FT, cause late flowering and dwarfism. In order to study the genetic pathways affected by FDP, we compared the global transcriptome changes of Col-0 plants carrying a fusion of the strong ubiquitously expressed CaMV35S promoter to an FDP DsRNAi construct (35S::FDP dsRNA).
Project description:Several pathways conferring environmental flowering responses in Arabidopsis converge on developmental processes that act in the shoot apical meristem to mediate the floral transition. Many characterized mutations impair environmental flowering responses, however downstream developmental processes have been more refractory to mutagenesis. We constructed a quintuple mutant in which several environmental pathways are impaired and showed that its flowering responses to changes in photoperiod and ambient temperature are almost abolished. Analysis of the quintuple mutant by RNA-seq showed that expression of gibberellin biosynthetic genes and transcription factors that contribute to the age pathway correlate with flowering. Mutagenesis of the quintuple mutant recovered two late-flowering mutants, quintuple ems 1 (qem1) and qem2. The causal genes were identified by isogenic mapping and transgenic complementation. The qem1 mutation was an allele of ga20ox2, confirming the importance of gibberellin for flowering in the absence of environmental responses. By contrast, qem2 is in CHROMATIN REMODELING 4 (CHR4), which was not previously genetically implicated in floral induction. Using co-immunoprecipitation, RNA-seq and ChIP-seq, we show that CHR4 interacts with transcription factors involved in floral meristem identity and affects expression of key floral regulators. We conclude that CHR4 plays important roles in the inflorescence meristem to promote floral identity.
Project description:Shoot apical meristem (SAM) of higher plant composed of a few distinct cell types. All the cells in a mature plant’s SAM derived from 30~35 stem cells reservoir which are located at the tip of the apex. Plants ability to give rise diverse cell types from a pool of pluripotent stem cells requires orchestrated gene network that controls the cell fate commitment during the meristem development. To understand, how gene regulatory networks control cell identities switches during cell differentiation requires resolution in recording their gene expression pattern at single cell resolution. An earlier expression map involving three-cell population of stem cell niche revealed complex expression pattern among the cell types1. We developed this approach further and report here a gene expression map using cell-sorting methods for fluorescent protein marked cells in Arabidopsis shoot. The map covered 10 cell populations. This gene expression map represents data from 10 different cell types from Arabidopsis SAM. It will be first step in defining the function of many unknown genes in model plant Arabidopsis.
Project description:Plants grow continuously and undergo numerous changes in their vegetative morphology and physiology during their life span. The molecular basis of these changes is largely unknown. To provide a more comprehensive picture of shoot development in Arabidopsis, microarray analysis was used to profile the mRNA content of shoot apices of different ages, as well as leaf primordia and fully-expanded leaves from 6 different positions on the shoot, in early-flowering and late-flowering genotypes. This extensive dataset provides a new and unexpectedly complex picture of shoot development in Arabidopsis. At any given time, the pattern of gene expression is different in every leaf on the shoot, and reflects the activity at least 6 developmental programs. Three of these are specific to individual leaves (leaf maturation, leaf aging, leaf senescence), two occur at the level of the shoot apex (vegetative phase change, floral induction), and one involves the entire shoot (shoot aging). Our results demonstrate that vegetative development is a much more dynamic process that previously imagined, and provide new insights into the underlying mechanism of this process.