Project description:Dissolved oxygen (DO) in cultured water is one of the important environment factor in fish farming. Hypoxic environment affects fish growth, metabolism and immune system. Multi-omics integrative analysis helps to uncover the underlying molecular mechanisms. In this study, the 96h median lethal hypoxia (96h-LH50) for Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) was first analyzed by linear interpolation. We built control (5mg/l) and hypoxic stress (96h-LH50) groups, and extracted the liver tissues for high-throughput transcriptome and metabolome sequencing. The identification and quantification results of metabolites showed that a total of 19656 metabolites had been obtained, of which 10390 were annotated. There were 3028 differentially expressed (DE) metabolites, of which 1596 metabolites were up-regulated and 1432 metabolites were down-regulated. We obtained 2375 DE genes, of which 1201 genes were up-regulated and 1174 genes were down-regulated. We verified 8 DE genes by quantitative real-time PCR. Our finding reveals the changes in metabolites and genes expression of GIFT and facilitate the understanding of regulatory pathways under hypoxic stress, which will help reduce the damage caused by hypoxic stress during culture.
Project description:Commercial production of tilapia relies on monosex cultures of males, which so far proved difficult to maintain in large scale production facilities. Thus, a better understanding of the genetic architecture of the complex trait of sex determination in tilapia is needed.We aimed to detect genes that were differentially expressed by gender at early embryonic development. Artificial fertilization of O. niloticus females with either sex-reversed males (ΔXX) or genetically-modified YY 'supermales' resulted in all-female and all-male embryos, respectively. Pools of all-female and all-male embryos at 2, 5 and 9 days post fertilization were used for custom Agilent eArray. 56 pool samples of Nile tilapia full siblings groups (female or male) at day 2, 5 or 9 post fertilization were subjected to total RNA extraction from whole embryo tissues and hybridized to the custom Agilent array. Each sample was yielded from different cross of artificial fertilization: six dams X five sires. The resulting gender were known based on the sire, sex-reversed males (ΔXX) or genetically-modified YY 'supermales' resulted in all-female and all-male embryos, respectively.
Project description:In fish, the sex determining mechanisms can broadly be classified as genotypic (GSD), temperature-dependent (TSD), or genotypic plus temperature effects (GSD+TE). For the fish species with TSD or GSD+TE, extremely high or low temperature can affect its sex determination and differentiation. For long time, the underlying changes in DNA methylation that occur during high or low temperature induced sex reversal have not been fully clarified. In this study, we used Nile tilapia as a model to perform a genome-wide survey of differences in DNA methylation in female and male gonads between control and high temperature induced groups using methylated DNA immunoprecipitation (MeDIP). We identified the high temperature induction-related differentially methylated regions (DMRs), and performed functional enrichment analysis for genes exhibiting DMR. These identified differentially methylated genes were potentially involved in the connection between environmental temperature and sex reversal in Nile tilapia. In this study, four samples (control females, CF; control males, CM; induced females, IF; induced males, IM) were analyzed.
Project description:In fish, the sex determining mechanisms can broadly be classified as genotypic (GSD), temperature-dependent (TSD), or genotypic plus temperature effects (GSD+TE). For the fish species with TSD or GSD+TE, extremely high or low temperature can affect its sex determination and differentiation. For long time, the underlying changes in DNA methylation that occur during high or low temperature induced sex reversal have not been fully clarified. In this study, we used Nile tilapia as a model to perform a genome-wide survey of differences in DNA methylation in female and male gonads between control and high temperature induced groups using methylated DNA immunoprecipitation (MeDIP). We identified the high temperature induction-related differentially methylated regions (DMRs), and performed functional enrichment analysis for genes exhibiting DMR. These identified differentially methylated genes were potentially involved in the connection between environmental temperature and sex reversal in Nile tilapia.
Project description:Dissolved oxygen (DO) is the basis of fish survival, and proper DO level is an important condition to ensure the normal growth of fish. Hypoxic environment is prone to disturb the normal breathing and metabolism of fish, which in turn affects their growth and survival. Gill tissue is the respiratory organs of fish and is in direct contact with the external environment. However, there are few reports on the molecular regulatory mechanism of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) gill tissues in response to hypoxia. Here, we first examine the hypoxia-induced damage of gill tissue by hematoxylin-eosin staining, and then constructed miRNA and mRNA libraries of GIFT gill tissue at 96h of hypoxia stress by a high-throughput sequencing technology, each library has three biological replicates. Gill lamellae of GIFT showed capillary rupture and red blood cell enlargement and overflow under hypoxia stress. Transcription sequencing results showed that the clean reads of miRNA libraries were 9,627,953-13,544,660; the clean reads of mRNA libraries were 43,817,776-53,130,102. Based on the miRNA-mRNA pairs screening principles and mRNA sequencing results, we selected and verified seven differentially expressed miRNAs and their potential target genes. The sequencing results were consistent with the qRT-PCR validation results. These selected miRNA-mRNA pairs are mainly concentrated in the signaling pathways of immune response and metabolic regulation. This study provides new insights into the mechanisms of fish adaptation under hypoxic stress.