Project description:Streptococcus equi subspecies equi (S. equi) is a major pathogen which cause strangles, a highly contagious respiratory infection, in horses and other equines. In this study, we purified the extracellular vesicles (EVs) of S. equi ATCC 39506 and evaluated them as vaccine candidates against S. equi infections in mice. Through immunization in an animal model and immunoprecipitation-mass spectrometry, we evaluated EV as vaccine candidates against S. equi infections and identified novel immunogenic proteins.
Project description:Streptococcus equi subspecies equi (S. equi) is a major pathogen which cause strangles, a highly contagious respiratory infection, in horses and other equines.In this study, we discovered potential vaccine candidates using comprehensive proteomics and reverse vaccinology. As the initial step, we divided proteome of S. equi ATCC 39506 into whole cell lysate, secretory proteome, membrane proteome and extracellular vesicle and then, comparative proteomic analysis was performed to characterize the functional features of the proteome. Especially, extracellular vesicle of S. equi was evaluated at the first time. Total 114 potential vaccine candidates (PVCs) were selected using reverse vaccinology and knowledge based annotations. Comprehensive proteomic analysis confirmed that 60 PVCs were identified in S. equi ATCC 39506. Particularly, 32 PVCs were enriched in the EV proteome, suggesting that this cellular fraction may serve as vaccine.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces.
Project description:Streptococcus equi subspecies equi, strain 1691 grown on COBA streptococcal selective agar shows classical mucoid colony morphology in addition to a reduced capsule phenotype. This project aimed to identify changes in the transcriptional profile between the two morphologies.