Project description:The intense human activities can cause irreversible environmental problems. Eucalyptus is a forest species widely used in planted forests, with a great capacity to assist in the mitigation of CO2 emissions and accumulation due to its C3 metabolism and high retention of carbon molecules in its biomass. The objective of this study was to investigate the differences in the sap proteome of two Eucalyptus species grown in an atmosphere enriched with CO2. For this purpose, young Eucalyptus grandis and Eucalyptus urophylla plants were grown in growth chambers 20 days under controlled atmospheric CO2 rates. The vascular proteome revealed 146 extracellular proteins, and their relative abundance was associated with the enriched atmosphere treatments. The analysis of protein function and abundance revealed that E. grandis proteins are mainly involved in organic substance metabolism and proteolysis, while less abundant proteins are related to cellular defense responses. Similar results were obtained for E. urophylla, with the most abundant proteins performing metabolic functions, while the least abundant protein was related to oxidative stress. These results may contribute to a better understanding of the mechanisms involved in the response of eucalyptus species to increased CO2 and provide useful information for the management and cultivation of these species in high levels of carbon dioxide environments.
Project description:We present a label free proteome dataset of the vascular sap proteome of three commercially important Eucalyptus species (Eucalyptus camaldulensis, Eucalyptus grandis and Eucalyptus urophylla). Protein extraction from the vascular system was carried out using a pressure bomb, in solution digested and peptides were analyzed using a Q-Exactive instrument. Protein identification was carried out using stringent database searches and only in silico predicted extracellular proteins were considered as part of the sap proteome. The results here described can be used as a reference for the proteome sap analysis of Eucalyptus plants grown under different conditions.
Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:The effects of two years' winter warming on the overall fungal functional gene structure in Alaskan tundra soil were studies by the GeoChip 4.2 Resuts showed that two years' winter warming changed the overall fungal functional gene structure in Alaskan tundra soil.
Project description:The rate, timing, and mode of species dispersal is recognized as a key driver of the structure and function of communities of macroorganisms, and may be one ecological process that determines the diversity of microbiomes. Many previous studies have quantified the modes and mechanisms of bacterial motility using monocultures of a few model bacterial species. But most microbes live in multispecies microbial communities, where direct interactions between microbes may inhibit or facilitate dispersal through a number of physical (e.g., hydrodynamic) and biological (e.g., chemotaxis) mechanisms, which remain largely unexplored. Using cheese rinds as a model microbiome, we demonstrate that physical networks created by filamentous fungi can impact the extent of small-scale bacterial dispersal and can shape the composition of microbiomes. From the cheese rind of Saint Nectaire, we serendipitously observed the bacterium Serratia proteamaculans actively spreads on networks formed by the fungus Mucor. By experimentally recreating these pairwise interactions in the lab, we show that Serratia spreads on actively growing and previously established fungal networks. The extent of symbiotic dispersal is dependent on the fungal network: diffuse and fast-growing Mucor networks provide the greatest dispersal facilitation of the Serratia species, while dense and slow-growing Penicillium networks provide limited dispersal facilitation. Fungal-mediated dispersal occurs in closely related Serratia species isolated from other environments, suggesting that this bacterial-fungal interaction is widespread in nature. Both RNA-seq and transposon mutagenesis point to specific molecular mechanisms that play key roles in this bacterial-fungal interaction, including chitin utilization and flagellin biosynthesis. By manipulating the presence and type of fungal networks in multispecies communities, we provide the first evidence that fungal networks shape the composition of bacterial communities, with Mucor networks shifting experimental bacterial communities to complete dominance by motile Proteobacteria. Collectively, our work demonstrates that these strong biophysical interactions between bacterial and fungi can have community-level consequences and may be operating in many other microbiomes.
Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.