Project description:Purpose: We investigate the evolutionary footprints of a bacteria-plasmid association consisting of Escherichia coli K-12 MG1655 and plasmid RP4 undergoing a long-term sub-MIC antibiotic stress. Methods: Bacterial mRNA profiles of evolved RP4-carrying strains (E:H:p) and ancestral RP4-carrying strains (A:H:p) were generated by deep sequencing on an Illumina Hiseq platform. The sequence reads that passed quality filters were analyzed by Burrows–Wheeler Aligner (BWA), followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays Results: Using an optimized data analysis workflow, we mapped about 15 million sequence reads of E:H:p and 12 million sequence reads of A:H:p to the E. coli MG1655 genome (GCF_000801205.1) and differential expressed genes were identified with TopHat workflow. RNA-seq data showed that approximately 15% of the transcripts showed differential expression between the E:H:p and A:H:p strains, with a fold change ≥1 and p value <0.005. Altered expression of 26 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Data analysis with bowtie and TopHat workflows provided complementary insights in transcriptome profiling. Conclusions: Our study showed the coevolved bacteria-plasmid pairs has colonization traits superior to the wild-type parent strain. Antibiotic stress was necessary for bacterial evolution and evolved strains mostly employed transcriptional modifications to reduce plasmid-related cost in evolutionary adaptations. Several genes related to chromosome-encoded efflux pumps were transcriptionally upregulated, while most plasmid-harboring genes were downregulated based on RNA gene sequencing. These transcriptional modifications endowed evolved strains with resistant phenotype modifications, including the enhanced bacterial growth and biofilm formation.
Project description:Transposon insertion site sequencing (TIS) is a powerful method for associating genotype to phenotype. However, all TIS methods described to date use short nucleotide sequence reads which cannot uniquely determine the locations of transposon insertions within repeating genomic sequences where the repeat units are longer than the sequence read length. To overcome this limitation, we have developed a TIS method using Oxford Nanopore sequencing technology that generates and uses long nucleotide sequence reads; we have called this method LoRTIS (Long Read Transposon Insertion-site Sequencing). This experiment data contains sequence files generated using Nanopore and Illumina platforms. Biotin1308.fastq.gz and Biotin2508.fastq.gz are fastq files generated from nanopore technology. Rep1-Tn.fastq.gz and Rep1-Tn.fastq.gz are fastq files generated using Illumina platform. In this study, we have compared the efficiency of two methods in identification of transposon insertion sites.
Project description:We report the genome-wide analysis from chromatin immunoprecipitated DNA (ChIP-sequencing) at very high resolution of the DNA binding pattern of ParBF (SopB) either on the full length plasmid F or on E. coli chromosome carrying the parSF centromere sequence. We also varied the intracellular ParBF concentration to discriminate between the several proposed mechanism of partition complexes assembly.
Project description:S. meliloti strains with a bi- and monopartite genome configuration were constructed by consecutive Cre/lox-mediated site-specific fusions of the secondary replicons. Beside the correct genomic arrangements, these strains and precursors were tested for variations in the nucleotide sequence. Futher, a marker fequency analysis was performed to test if replication is initiated at all origins and to determine the replication termination regions of the triple replicon fusion molecule. To gain the sequence data for these analyses, respective strains were applied to whole genome sequencing using an Illumina MiSeq-System and Oxford Nanopore (MinION) sequencing technology.
Project description:Low copy number plasmids must encode maintenance mechanisms, such as partitioning systems, to ensure that the plasmid is sustained through host generations. Plasmid partition systems segregate sister plasmid copies and are subdivided into different types based on the NTPase they encode. The characterisation and distribution of partition system types is well understood in Enterobacteriaceae plasmids. However, how these systems maintain plasmids and are distributed across wider bacterial diversity is poorly understood. We used the Streptomyces coelicolor A3(2) plasmid SCP1, which encodes two type Ia partition systems, as a model to investigate this. Sequence analysis of the SCP1 partition systems revealed that both ParB proteins contain less conserved CTP-binding pockets, suggesting one or both proteins may not behave like canonical ParB proteins. However, using a combination of chromatin immunoprecipitation with deep sequencing (ChIP-seq) we demonstrate that both the SCP1 ParB proteins, ParB1 and ParB2, bound to distinct parS sites on SCP1, and accumulate, or spread, on DNA approximately 20 kb away from their initial parS loading site. Together, our findings further our understanding of Streptomyces plasmid maintenance by providing the first functional characterisation of two type Ia partition systems coexisting on a single plasmid and offer new insights into the diversity and distribution of plasmid partition systems.
Project description:Transcriptional profiling of A. oleivorans DR1 cells harboring pAST2. Plasmid pAST2 is a tetracycline-resistance plasmid which was isolated from activated sludge (Hong et al., 2014). The complete plasmid sequence was deposited in the National Center for Biotechnology Information (NCBI) GenBank under accession number KC734561 [PMID: 24337108].