Project description:The data represent whole genome sequencing of two sequential isolates of B. contaminans ST872 that have been retrieved form a cystic fibrosis patient during different phases of chronic pulmonary infection.
Project description:Precise definition of porin profiles is of critical importance to understand the role of porins in antimicrobial resistance. In this study, the outer membrane proteins (OMP) profiles of 26 clinical isolates of Klebsiella pneumoniae and of strain ATCC 13883 (wild-type) and ATCC 700603 (producing SHV-18) have been determined using both sodium-dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization–time of flight/mass spectrometry (MALDI-TOF/MS). SDS-PAGE was performed using both homemade and commercial gels, and protein bands were identified by liquid chromatography coupled to mass spectrometry. A rapid extraction method was used to analyse OMPs by MALDI-TOF/MS. The sequences of porin genes were obtained by whole genome sequencing (WGS) and mutations were defined by BLAST. Same results were obtained for all strains either using SDS-PAGE or MALDI-TOF/MS. SDS-PAGE showed protein bands of ~35, ~36, and ~37 KDa, identified as OmpA, OmpK36 and OmpK35, respectively. By MALDI-TOF/MS, peaks at ~35700 (OmpA), ~37000 (OmpK35), and ~38000 (OmpK36) m/z were detected. ompK35 was intact in nine wild-type isolates and was truncated in 13 isolates, but OmpK35 was not observed in 3 isolates without mutations in ompK35. One point mutation was detected in another isolate and multiple mutations were detected in the remaining isolate. ompK36 was truncated in two isolates lacking this protein and presented one point mutation (n=1) or multiple mutations in the remaining isolates. In conclusion, MALDI-TOF/MS was reliable for porin detection, but because of the complex regulation of porin genes, WGS cannot always anticipate protein expression, as observed with SDS-PAGE and MALDI-TOF/MS.
Project description:Multipartite bacterial genome organization can confer advantages including coordinated gene regulation and faster genome replication, but is challenging to maintain. Agrobacterium tumefaciens lineages often contain a circular chromosome (Ch1), a linear chromosome (Ch2), and multiple plasmids. We previously observed that in some stocks of the lab model strain C58, Ch1 and Ch2 were fused into a linear dicentric chromosome. Here we analyzed Agrobacterium natural isolates from the French Collection for Plant-Associated Bacteria (CFBP) and identified two strains with fused chromosomes. Chromosome conformation capture identified integration junctions that were different from the C58 fusion strain. Genome-wide DNA replication profiling showed both replication origins remained active. Transposon sequencing revealed that partitioning systems of both chromosome centromeres were essential. Importantly, the site-specific recombinases XerCD are required for the survival of the strains containing the fusion chromosome. Our findings show that replicon fusion occurs in natural environments and that balanced replication arm sizes and proper resolution systems enable the survival of such strains.