Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
2016-08-22 | PXD003791 | Pride
Project description:Whole genome sequencing of Campylobacter samples from the United Kingdom
Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of the fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites. Campylobacter jejuni NCTC 11168 fur perR mutant was grown to late log phase, RNA was purified and used for differential RNA-sequencing by 454 sequencing with barcoded libraries, and used for determination of genome-wide transcription start sites
Project description:The diversity and heterogeneity within high-grade serous ovarian cancer (HGSC) is not well understood. Comprehensive molecular analyses were performed including high-pass whole-genome sequencing, targeted deep DNA sequencing, RNA sequencing, reverse-phase protein arrays, mass spectrometry-based proteomics and phosphoproteomics, and immune profiling on primary and metastatic sites from highly clinically annotated HGSC samples. Samples were obtained pre-treatment based on a laparoscopic triage algorithm from patients who underwent R0 tumor debulking or received neoadjuvant chemotherapy (NACT) with excellent or poor response.
Project description:In order to validate of CNV detection from low-coverage whole-genome sequencing in the blood samples from recurrent miscarriage couples, we employed a customized array Comparative Genomics Hybridization (aCGH, Agilent) approach as chromosomal microarray analysis (CMA) in present study for a cohort of 78 DNA samples from blood. CMA results were compared with low-coverage whole-genome sequencing detection results. 100% consistency was obtained in pathogenic or likely pathogenic CNVs detection.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of wildtype Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of the fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.