Project description:Caldicellulosiruptor saccharolyticus is an extremely thermophilic, Gram-positive anaerobe, which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2 and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to co-utilize glucose and xylose, make this bacterium an attractive candidate for microbial bioenergy production. Glycolytic pathways and an ABC-type sugar transporter were significantly up-regulated during growth on glucose and xylose, indicating that C. saccharolyticus co-ferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks represents a highly desirable feature of a lignocellulose-utilizing, biofuel-producing bacterium. Keywords: substrate response
Project description:The ideal microorganism for consolidated biomass processing to biofuels has the ability to breakdown of lignocellulose. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on lignocellulose samples as well as model hemicellulose components. Identification of the enzymes utilized by the cell in lignocellulose saccharification was done using whole-genome transcriptional response analysis and comparative genomics.
Project description:In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg NH3-N/L).
Project description:Caldicellulosiruptor saccharolyticus is an extremely thermophilic, Gram-positive anaerobe, which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2 and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to co-utilize glucose and xylose, make this bacterium an attractive candidate for microbial bioenergy production. Glycolytic pathways and an ABC-type sugar transporter were significantly up-regulated during growth on glucose and xylose, indicating that C. saccharolyticus co-ferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks represents a highly desirable feature of a lignocellulose-utilizing, biofuel-producing bacterium. Keywords: substrate response C. saccharolyticus was subcultured (overnight) 3 times on the substrate of interest in modified DSMZ 640 medium before inoculating a pH-controlled (pH = 7) 1-liter fermentor containing 4 gram substrate per liter. Cells were grown at 70 °C until mid-logarithmic phase (~OD660 = 0.3-0.4) and harvested by centrifugation and rapid cooling to 4 °C and stored at -80 °C. To elucidate the central carbon metabolic pathways and their regulation, transcriptome analysis was performed after growth on glucose, xylose and a 1:1 mixture of both substrates. L-Rhamnose, which was likely to follow another pathway, was used as a reference substrate.
Project description:Myceliophthora thermophila is a thermophilic fungus with great biotechnological characteristics for industrial applications, which can degrade and utilize all major polysaccharides in plant biomass. Nowadays, it has been developing into a platform for production of enzyme, commodity chemicals and biofuels. Therefore, an accurate genome-scale metabolic model would be an accelerator for this fungus becoming a universal chassis for biomanufacturing. Here we present a genome-scale metabolic model for M. thermophila constructed using an auto-generating pipeline with consequent thorough manual curation. Temperature plays a basic and critical role for the microbe growth. we are particularly interested in the genome wide response at metabolic layer of M. thermophilia as it is a thermophlic fungus. To study the effects of temperature on metabolic characteristics of M. thermophila growth, the fungus was cultivated under different temperature. The metabolic rearrangement predicted using context-specific GEMs integrating transcriptome data.The developed model provides new insights into thermophilic fungi metabolism and highlights model-driven strain design to improve biotechnological applications of this thermophilic lignocellulosic fungus.
Project description:The zygomycete fungi-like Rhizomucor miehei have been extensively exploited for the production of various enzymes. As a thermophilic fungus, R. miehei is capable of growing at temperatures that approach the upper limits for all eukaryotes. In order to study the thermophilic mechanism, the transcriptional profiles of R. miehei CAU432 grown at two different temperatures (at 30°C and 50°C) were investigated by RNA-seq analysis. Approximately 35 million high-quality reads were generated from each library, and 62% reads were uniquely mapped to the genome. A high percentage of reads (67.1%) were mapped to predicted protein-coding genes, while 3.96% reads were distributed in splice junctions, 3.49% reads in antisense transcripts, 2.27% in introns, and 21.9% in other genomic regions. The frequency of reads which mapped to different genes ranged from one to over 300,000. More than 90% of predicted genes (9,680, 93% at 30°C; 9,618, 93.6% at 50°C) were detected with at least one read, while 128 genes and 190 genes were uniquely expressed at 50°C and 30°C, respectively. The results show that 2,117 genes were differently expressed (P<0.001) by the fungus with more than two-fold changes. These genes include 849 up-regulated and 1,268 down-regulated genes in mycelia grown at 50°C. These significantly differently expressed genes include many genes, putatively involved in thermophilic process, such as HSP, chaperones and proteasome.
Project description:The ideal microorganism for consolidated biomass processing to biofuels has the ability to breakdown of lignocellulose. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on lignocellulose samples as well as model hemicellulose components. Identification of the enzymes utilized by the cell in lignocellulose saccharification was done using whole-genome transcriptional response analysis and comparative genomics. C. saccharolyticus was subcultured (overnight) seven times on the substrate of interest in modified DSMZ 640 medium before inoculating a 1-liter batch containing 0.5 gram substrate per liter. Cells were grown at 70 °C until mid-logarithmic phase (3-5*107) and harvested by rapid cooling to 4 °C and centrifugation and then stored at -80 °C. To elucidate the transporters plus the central carbon metabolic pathways and their regulation utilized on the different sugars, transcriptome analysis was performed after growth on switchgrass, poplar, glucose and xylose.
Project description:Cultivation and genomic analysis of Candidatus Nitrosocaldus islandicus, a novel obligately thermophilic ammonia-oxidizing thaumarchaeon