Project description:To address the delivery barriers of macromolecular therapeutics, we sought to develop high-throughput peptide barcoding platform as a homogeneous method for macromolecular screening. Implemented in open-source algorithms, BarcodeBabel and PeptideBabel, this approach permits the design of libraries of peptide barcodes and novel penetration sequences optimized for analysis by quantitative mass spectrometry.
Project description:Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. We developed a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. We tested our method using bone samples from 30 vertebrate species ranging from mammals to fish.
2023-12-14 | PXD045402 | Pride
Project description:Complete Genome Sequence of Streptomyces Phage phiRKBJ001 Isolated from Prince Edward Island, Canada
Project description:We describe the development of a high-sensitivity protein quantification system called HaloTag protein barcoding assay. The assay involves target protein linking to a unique molecule-counting oligonucleotide by click chemistry.
Project description:Detecting strain-specific barcodes with mass spectrometry can facilitate the screening of genetically engineered bacterial libraries. Here, we introduce intact protein barcoding, a method to measure protein-based library barcodes and metabolites using flow-injection mass spectrometry (FI-MS). Protein barcodes are based on ubiquitin with N-terminal tags of six amino acids. We demonstrate that FI-MS detects intact ubiquitin proteins and identifies the mass of N-terminal barcodes. In the same analysis, we measured relative concentrations of primary metabolites. We constructed 6 ubiquitin-barcoded CRISPRi strains targeting metabolic enzymes, and analyzed their metabolic profiles and ubiquitin barcodes. FI-MS detected barcodes and distinct metabolome changes in CRISPRi-targeted pathways. We demonstrate the scalability of intact protein barcoding by measuring 132 ubiquitin barcodes in microtiter plates. These results show that intact protein barcoding enables fast and simultaneous detection of library barcodes and intracellular metabolites, opening up new possibilities for mass spectrometry-based barcoding.
Project description:It is elusive whether clonal selection of tumor cells in response to ionizing radiation (IR) is a deterministic or stochastic process. With high resolution clonal barcoding and tracking of over 400.000 HNSCC patient-derived tumor cells the clonal dynamics of tumor cells in response to IR was analysed. Fractionated IR induced a strong selective pressure for clonal reduction. This significantly exceeded uniform clonal survival probabilities indicative for a strong clone-to clone difference within tumor cells. Survival to IR is driven by a deterministic clonal selection of a smaller population which commonly survives radiation, while increased clonogenic capacity is a result of clonal competition of cells which have been selected stochastically. The ratio of these parameters is amenable to radiation sensitivity which correlates to prognostic biomarkers of HNSCC. Evidence for the existence of a rare subpopulation with an intrinsically radiation resistant phenotype was found at a frequency of 0.6-3.3%. With cellular barcoding we introduce a novel functional heterogeneity associated qualitative readout for evaluating the contribution of stochastic and deterministic clonal selection processes in response to IR.