Project description:Wound infections are traditionally thought to occur when microbial burden exceeds the innate clearance capacity of host immune system. Here we introduce the idea that the wound environment itself plays a significant contributory role to wound infection. We developed a clinically relevant murine model of soft tissue infection to explore the role of activation of microbial virulence in response to tissue factors as a mechanism by which pathogenic bacteria cause wound infections. Mice underwent abdominal skin incision and light muscle injury with a crushing forceps versus skin incision alone followed by topical inoculation of Pseudomonas aeruginosa. Pseudomonas aeruginosa whole genome transcriptional profiling demonstrated that fascia induced the activation of multiple genes responsible for the synthesis of the iron scavenging protein pyochelin. Ex-vivo murine fascia homogenates were prepared and Pseudomonas aeruginosa MPAO1 was incubated with an inoculum of the fascia homogenate solution. Pseudomonas aeruginosa MPAO1 incubated under the same condtions without the homogenate was used as the control group. Three biological replicates in each group was used.
Project description:Wound infections are traditionally thought to occur when microbial burden exceeds the innate clearance capacity of host immune system. Here we introduce the idea that the wound environment itself plays a significant contributory role to wound infection. We developed a clinically relevant murine model of soft tissue infection to explore the role of activation of microbial virulence in response to tissue factors as a mechanism by which pathogenic bacteria cause wound infections. Mice underwent abdominal skin incision and light muscle injury with a crushing forceps versus skin incision alone followed by topical inoculation of Pseudomonas aeruginosa. Pseudomonas aeruginosa whole genome transcriptional profiling demonstrated that fascia induced the activation of multiple genes responsible for the synthesis of the iron scavenging protein pyochelin.
2014-10-01 | GSE61925 | GEO
Project description:Mixed pathogens of acute respiratory infections.
Project description:Microarrays have become established tools for describing microbial systems, however the assessment of expression profiles for environmental microbial communities still presents unique challenges. Notably, the concentration of particular transcripts are likely very dilute relative to the pool of total RNA, and PCR-based amplification strategies are vulnerable to amplification biases and the appropriate primer selection. Thus, we apply a signal amplification approach, rather than template amplification, to analyze the expression of selected lignin-degrading enzymes in soil. Controls in the form of known amplicons and cDNA from Phanerochaete chrysosporium were included and mixed with the soil cDNA both before and after the signal amplification in order to assess the dynamic range of the microarray. We demonstrate that restored prairie soil expresses a diverse range of lignin-degrading enzymes following incubation with lignin substrate, while farmed agricultural soil does not. The mixed additions of control cDNA with soil cDNA indicate that the mixed biomass in the soil does interfere with low abundance transcript changes, nevertheless our microarray approach consistently reports the most robust signals. Keywords: comparative analysis, microbial ecology, soil microbial communities
2009-06-01 | GSE13977 | GEO
Project description:Characterization of mixed begomovirus infections in tomato
| PRJNA935930 | ENA
Project description:Mixed Candida auris Strain Infections in China
Project description:Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures. To maximize PHA production, mixed microbial cultures may be enriched for PHA-producing bacteria with a high storage capacity through the imposition of cyclic, aerobic feast-famine conditions in a sequencing batch reactor (SBR). Though enrichment SBRs have been extensively investigated a bulk solutions-level, little evidence at the proteome level is available to describe the observed SBR behavior to guide future SBR optimization strategies. As such, the purpose of this investigation was to characterize proteome dynamics of a mixed microbial culture in an SBR operated under aerobic feast-famine conditions using fermented dairy manure as the feedstock for PHA production. At the beginning of the SBR cycle, excess PHA precursors were provided to the mixed microbial culture (i.e., feast), after which followed a long duration devoid of exogenous substrate (i.e., famine). Two-dimensional electrophoresis was used to separate protein mixtures during a complete SBR cycle, and proteins of interest were identified.
Project description:Wheat (Chisenese Spring) transcriptome analyses during single and mixed infections by an avirulent and a virulent strains of Z. tritici.
Project description:This study investigates the role of carbon-to-phosphorus (C/P) ratios in shaping microbial community dynamics and polyhydroxyalkanoates (PHA) production in sequencing batch reactors (SBR) fed with volatile fatty acids. Three conditions, characterized by fixed organic loading rates but varying C/P ratios (Run 1 = 170 Cmol Pmol-1; Run 2 = 235 Cmol Pmol-1; Run 3 = 400 Cmol Pmol-1), were tested to explore their impact on PHA accumulation, biomass growth, and reactor stability. Results indicate that the moderate phosphorus limitation of Run 2 achieves the best overall performance, with a PHA volumetric productivity of 2.02 g PHA L-1 d-1 and process stability. Conversely, higher C/P ratio increased the storage yield but lowered the productivity (1.55 gPHA L-1 d-1), compromising sludge settleability and reactor stability, indicating impaired microbial functionality. Full-length 16S/18S rRNA gene sequencing using PacBio technology enabled high-resolution profiling of microbial communities, revealing ecological shifts across conditions. Run 2 exhibited the highest bacterial and eukaryotic diversity, featuring multiple PHA-accumulating bacteria (mainly Sphaerotilus, Leadbetterella, and uncultured Rhodobacteraceae) and a well-structured eukaryotic community dominated by K-strategist bacterivorous protists, e.g. Rhogostoma (Rhizaria) and Vorticella (Ciliophora, Oligohymenophorea) and predatory protozoa, e.g. Tokophrya (Ciliophora, Suctoria). In contrast, Sphaerotilus dominated under suboptimal conditions and may be linked to bulking. These results suggest that eukaryotic diversity may support system stability through selective predation. Transmission electron microscopy (TEM) further confirmed the presence of intracellular PHA granules and polyphosphate reserves, reinforcing the connection between nutrient limitation and adaptive microbial strategies. Overall, these findings highlight the critical role of the C/P ratio in shaping the performance of mixed microbial cultures, demonstrating that a well-balanced nutrient supply can enhance PHA production while maintaining microbial community stability. The results contribute to optimizing the selection process for mixed microbial cultures, offering valuable insights into the impact of carbon-to-nutrient ratios in the feeding strategy.