Project description:The maturation of functional eggs in ovaries is essential for successful reproduction in mammals. Despite its biological and clinical importance, the underlying mechanisms regulating folliculogenesis remain enigmatic. Here, using murine ovaries, we report that the theca cells surrounding secondary follicles play a critical role in regulating follicle development through mechanical signalling. Using biophysical approaches, we found that the contractile theca cells exert significant compressive stress to the follicular interior through active assembly of fibronectin. Manipulation of compressive stress by targeting theca cell contractility, basement membrane integrity or intrafollicular pressure leads to changes in follicle size and mechanics, granulosa cell YAP signalling and oocyte-granulosa cell communications. Transcriptomics and quantitative immunofluorescence reveal that compressive stress impacts functional follicle growth through regulating the balance between granulosa cell proliferation and death that drives tissue pressure homeostasis. Altogether, our study identifies new mechanical functions of theca cells and provides quantitative evidence of the role of compressive stress in regulating mammalian folliculogenesis.
Project description:We performed a systematic study of 141 mammalian RhoGAPs and GEFs including their interactome, specificity and localisation. Here we submit the data from the interactome screen that were processed using MaxQuant.
Project description:Decoding post-transcriptional regulatory programs underlying gene expression is a crucial step toward a predictive dynamical understanding of cellular state transitions. Despite recent systematic efforts, the sequence determinants of such mechanisms remain largely uncharacterized. An important obstacle in revealing these elements stems from the contribution of local secondary structures in defining interaction partners in a variety of regulatory contexts, including but not limited to transcript stability, alternative splicing and localization. There are many documented instances where the presence of a structural regulatory element dictates alternative splicing patterns (e.g. human cardiac troponin T) or affects other aspects of RNA biology. Thus, a full characterization of post-transcriptional regulatory programs requires capturing information provided by both local secondary structures and the underlying sequence. We have developed a computational framework based on context-free grammars and mutual information that systematically explores the immense space of structural elements and reveals motifs that are significantly informative of genome-wide measurements of RNA behavior. The application of this framework to genome-wide mammalian mRNA stability data revealed eight highly significant elements with substantial structural information, for the strongest of which we showed a major role in global mRNA regulation. Through biochemistry, mass-spectrometry, and in vivo binding studies, we identified HNRPA2B1 as the key regulator that binds this element and stabilizes a large number of its target genes. Ultimately, we created a global post-transcriptional regulatory map based on the identity of the discovered linear and structural cis-regulatory elements, their regulatory interactions and their target pathways. This approach can also be employed to reveal the structural elements that modulate other aspects of RNA behavior. This SuperSeries is composed of the following subset Series: GSE35749: sRSM1 synthetic decoy vs. scrambled transfections in MDA-MB-231 cells GSE35753: HNRPA2B1 RIP-chip GSE35756: Whole-genome decay rate measurements in MDA-MB-231 cells transfected with HNRPA2B1 siRNAs versus controls GSE35757: siRNA-mediated HNRPA2B1 knock-down in MDA-MB-231 cells GSE35799: HNRPA2B1 HITS-CLIP Refer to individual Series
Project description:In this project we cloned 141 mammalian RhoGAPs/GEFs (112 human, 26 mouse, 2 rat, 1 chimpanzee) and performed a systematic study of their interactome, localisation and specificity. Here we submit the mass spectrometry data from the interactome screen.