Alterations of the gut microbiome and metabolism with progression of coronary artery disease
Ontology highlight
ABSTRACT: Coronary artery disease is one of the most prevalent cardiovascular diseases worldwide. The gut microbes-derived metabolites have been suggested to use as markers for major adverse cardiac event, yet the contributions of gut microbes and bacterial metabolites towards atherosclerosis remain largely uncharacterized. We indicated a relationship between the gut microbiome and metabolomics and provided preliminary evidence that gut dysbiosis interacts with metabolic pathways to affect atherosclerosis severity. Our findings point towards a new strategy aimed at reducing cardiovascular risks through restoring the homeostasis of gut microbiota.
Project description:Atherosclerosis is fundamental in the development of cardiovascular disease. The unhealthy dietary habits, high fat and cholesterol intake could change the composition of gut microbes and metabolites which play a critical role in the development of atherosclerosis. To characterize the functionality of intestinal microbiome in the AS, we performed an analysis of microbiota proteins by a metaproteomics technique in 6 control samples and 6 feces samples. Using data dependent acquisition (DDA), a total of 8467 peptides with taxonomy annotation were identified and which were correspond to 3851 protein groups.
Project description:Intestinal microbiota dysbiosis is related to many metabolic diseases in human health. Meanwhile, as an irregular environmental light-dark cycle, short-day (SD) may induce host circadian rhythms disturbances and worsen the risks of gut dysbiosis. Herein, we investigated how LD cycles regulate intestinal metabolism upon the destruction of gut microbes with antibiotic treatments. The transcriptome data indicated that SD have some negative effects on hepatic metabolism, endocrine, digestive, and diseases processes compared with normal light-dark cycle (NLD).The SD induced epithelial and hepatic purine metabolism pathway imbalance in ABX mice, the gut microbes, and their metabolites, all of which could contribute to host metabolism and digestion, endocrine system disorders, and may even cause diseases in the host.
Project description:Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice, and positively correlates with the severity of this disease in human. However, which microbes contribute to TMA production in the human gut; the extent to which host factors, e.g., genotype and diet, affect TMA production and colonization of these microbes; as well as the effects TMA-producing microbes have on bioavailability of dietary choline remain largely unknown. We screened a collection of 78 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified eight strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization of TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest the TMA producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans.
Project description:Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses.
Project description:Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses.
Project description:The regulation of metabolites comprises the fundamental biological processes of human. More new phenotypes of classic metabolites were revealed, while the devolution of functional targets and mechanisms of them still have many gaps due to diversity in structures and functions. Here, we report a bioinformation and attention mechanism based deep learning model leveraging abundant bioinformation of metabolites for functional target prediction of specific phenotypes. Taking advantage of this model, the potential target database of 3,382 common human metabolites were resourced publicly. Norepinephrine was identified as a selective peroxidase inhibitor of peroxiredoxin 1 (PRDX1) for atherosclerosis aggravation in model validation experiments. Salvianolic acid A (SAA) was screened out as PRDX1 exogenous stabilization compound for rescuing norepinephrine’s aggravation effects in vivo. Besides, bulk RNA-Sequencing analysis indicated norepinephrine aggravates atherosclerosis through activating transcriptional activity of SREBP2 in a ROS dependent manner. Overall, our research provides a new computational regime for metabolites target identification besides experimental chemical proteomics and PRDX1 stabilization was validated a potential druggable target for cardiovascular diseases intervention.
Project description:Gut-resident microbes contribute to host health via multiple mechanisms. Some of the most striking gut microbiota induced effects occur in the extraintestinal tissues and are restricted to early life. The mechanisms by which gut residing bacteria induce effects on distant host tissues and why this is restricted to a period in early life are largely unknown. We found that a subset of live gut-resident bacteria spontaneously translocate from gut to extraintestinal tissues in preweaning, but not adult mice. Translocation in preweaning mice appeared physiologic as it did not induce an inflammatory response and was in part controlled by sphingosine-1-phsophate receptor (S1PR) expressing host cells and host goblet cells. One translocating strain, Lactobacillus animalisWU, contained unique coding sequences for genes in the tyrocidine-gramicidin antibiotic-synthesizing gene cluster as well as five other regions putatively producing secondary metabolites with anti-microbial activity. Lactobacillus animalisWU exhibited antimicrobial activity against the late-onset sepsis pathogen E. coli ST69 in vitro, and translocation of L. animalisWU protected preweaning mice from systemic E. coli ST69 sepsis in vivo. These observations demonstrate a previously unappreciated higher-level symbiosis with our gut microbes.
Project description:Background: More than 100 million Americans are living with metabolic syndrome, increasing their propensity to develop heart disease– the leading cause of death worldwide. A major contributing factor to this epidemic is caloric excess, often a result of consuming low cost, high calorie fast food. Several recent seminal studies have demonstrated the pivotal role of gut microbes contributing to cardiovascular disease in a diet-dependent manner. Given the central contributions of diet and gut microbiota to cardiometabolic disease, we hypothesized that novel microbial metabolites originating postprandially after fast food consumption may contribute to cardiometabolic disease progression. Methods: To test this hypothesis, we gave conventionally raised or antibiotic-treated mice a single oral gavage of a fast food slurry or a control rodent chow diet slurry and sacrificed the mice four hours later. Here, we coupled untargeted metabolomics in portal and peripheral blood, 16S rRNA gene sequencing, targeted liver metabolomics, and host liver RNA sequencing to identify novel fast food-derived microbial metabolites. Results: We successfully identified several metabolites that were enriched in portal blood, increased by fast food feeding, and essentially absent in antibiotic-treated mice. Strikingly, just four hours post-gavage, we found that fast food consumption resulted in rapid reorganization of the gut microbial community structure and drastically altered hepatic gene expression. Importantly, diet-driven reshaping of the microbiome and liver transcriptome was dependent on a non-antibiotic ablated gut microbial community. Conclusions: Collectively, these data suggest that single fast food meal is sufficient to reshape the gut microbial community yielding a unique signature of food-derived microbial metabolites. Future studies are warranted to determine if these metabolites are causally linked to cardiometabolic disease.
Project description:Microbial dysbiosis is a colorectal cancer (CRC) hallmark and contributes to inflammation, tumor growth, and therapy response. Gut microbes signal via metabolites, but how the metabolites impact CRC is largely unknown. We interrogated fecal metabolites associated with mouse models of colon tumorigenesis with varying mutational load. We found that microbial metabolites from healthy mice or humans were growth-repressive, and this response was attenuated in mice and patients with CRC. Microbial profiling revealed that Lactobacillus reuteri and its metabolite, reuterin were downregulated in mouse and human CRC. Reuterin altered redox balance, and reduced survival, and proliferation in colon cancer cells. Reuterin induced selective protein oxidation, and inhibited ribosomal biogenesis and protein translation. Exogenous Lactobacillus reuteri restricted mouse colon tumor growth, increased tumor reactive oxygen species, and decreased protein translation in vivo. Our findings indicate that a healthy microbiome and specifically, Lactobacillus reuteri, is protective against CRC through microbial metabolite exchange.