Project description:Muconic acid production from engineered Corynebacterium glutamicum. Gene expression analysis in the pathway redesigned Corynebacterium glutamicum
Project description:Metabolically engineered Corynebacterium glutamicum strains were constructed for the enhanced production of L-arginine, and their gene expression profiles were investigated
Project description:Metabolically engineered Corynebacterium glutamicum strains were constructed for the enhanced production of L-arginine, and their gene expression profiles were investigated Gene expression profiles of two C. glutamicum strains AR2 and AR6 were examined for the 3043 genes twice.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum in the cg2699 deletion strain, we performed DNA microarray analyses of C. glutamicum Δcg2699 compared to the WT.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum in the cg2460 deletion strain, we performed DNA microarray analyses of C. glutamicum Δcg2460 compared to the WT.
Project description:Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C.glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.
Project description:Recently, we established Corynebacterium glutamicum as a suitable production host for various bacteriocins including garvicin Q (GarQ). Here, we establish secretion of GarQ by C. glutamicum via the Sec translocon. At neutral pH, the cationic peptide is efficiently adsorbed to the negatively charged envelope of producer bacteria limiting availability of the bacteriocin in culture supernatants. Using a reporter strain and proteomic analyses, we identified HtrA, a protease associated with secretion stress, as another potential factor limiting GarQ production.
Project description:For the establishment of synthetic microbial communities comprising complementary auxotrophic strains, transport processes for common goods are extremely important. Most auxotrophic strains reach wild type level growth with external supplementation of the required metabolite. One exception was the tryptophan auxotrophic strain Corynebacterium glutamicum ΔTRP ΔtrpP, which grew about 35% slower than the wild type in supplemented minimal medium. Corynebacterium glutamicum ΔTRP ΔtrpP lacks the whole tryptophan biosynthesis cluster (TRP) as well as the putative tryptophan transporter TrpP. We wanted to explore the role of TrpP in tryptophan transport or synthesis and to unravel the cause for the growth limitation of the auxotrophic strain.