Project description:Unicellular algae, termed phytoplankton, greatly impact the marine environment by serving as the basis of marine food webs and by playing central roles in biogeochemical cycling of elements. The interactions between phytoplankton and heterotrophic bacteria affect the fitness of both partners. It is becoming increasingly understood that metabolic exchange determines the nature of such interactions, but the underlying molecular mechanisms remain underexplored. Here, we investigated the molecular and metabolic basis for the bacterial lifestyle switch, from coexistence to pathogenicity, in Sulfitobacter D7 during interactions with Emiliania huxleyi, a cosmopolitan bloom-forming phytoplankter. The interaction displays two distinct phases: first, there is a coexisting phase in which the alga grows exponentially and the bacterium grows as well. The interaction shifts to pathogenic when the virulence of Sulfitobacter D7 towards E. huxleyi is invoked upon exposure to high concentrations of algal dimethylsulfoniopropionate (DMSP), which occurs when the algae reach stationary growth or when DMSP is applied exogenously to algae in exponential growth. We aimed to unravel the response of Sulfitobacter D7 to the pathogenicity-inducing compound, DMSP, and to different algae-derived infochemicals that affect the lifestyle of the bacterium. We grew Sulfitobacter D7 in conditioned media (CM) derived from algal cultures at the different growth phases, exponential and stationary (Exp-CM and Stat-CM, respectively), in which DMSP concentration is low and high, respectively. This enabled us to separate between different phases of the interaction with E. huxleyi, i.e., Exp-CM representing the coexisting phase, and Stat-CM representing the pathogenic phase. An additional pathogenicity-inducing treatment was Exp-CM supplemented with 100 µM DMSP (herein Exp-CM+DMSP). This condition mimicked co-cultures to which we added DMSP exogenously and thus induced Sulfitobacter D7 pathogenicity, which lead to death of exponentially growing E. huxleyi. In order to identify bacterial genes that are specifically responsive to DMSP, and are not affected by other algae-derived factors, we grew Sulfitobacter D7 in defined minimal medium (MM), lacking algal metabolites, supplemented with 100 µM DMSP (herein MM+DMSP), and examined the transcriptional response. After 24 h of Sulfitobacter D7 growth in all 5 media, triplicates were taken for transcriptomic analysis. Altogether, this experimental design allowed to expand our understanding on the bacterial response to DMSP, algal infochemicals and which of these are essential for coexistence and pathogenicity.
Project description:Animal-algal photosymbioses are a unique group of symbiotic relationships in which animals harbor photosynthetic algae within their cells and tissues. Both marine and freshwater sponges host algal endosymbionts. In previous work, we demonstrated that freshwater sponges can acquire these endosymbionts horizontally through algal infection and that potentially conserved evolutionary pathways may lead to the establishment of the endosymbioses including those involved in endocytosis, ion transport, vesicle-mediated transport, innate immunity, redox regulation, and metabolic processes. Here, we show that algal symbionts can be transferred vertically from algal-bearing overwintering gemmules to adult sponges, and that their proliferation is enhanced by light. Sponges grown under light conditions harbored higher algal loads than those in the dark; however, algae were still able to proliferate and persist in sponges reared in the dark, occupying similar spatial locations to those grown in light. RNA-Seq analysis of algal-bearing sponges across developmental stages in light and dark conditions revealed genetic regulatory pathways involved in the transmission and establishment of the endosymbiosis. Differential expression analysis indicated that the endocytosis and SNARE pathways regulate the internalization and transport of algae at the earliest stage of hatching under light conditions and later in development under dark conditions, potentially contributing to the recruitment of endosymbiotic algae. In sponges hatched in the dark, genes involved in vesicle acidification are regulated, alongside changes in the expression of genes in the pentose phosphate pathway - a key metabolic route involved in redox homeostasis and circadian rhythm regulation via NADPH metabolism, is observed. E. muelleri serves as a versatile model system, supported by robust genomic and transcriptomic resources, for studying host-symbiont interactions. It offers a unique opportunity to investigate the molecular signaling and environmental factors that shape symbiosis in a system where the host can exist with or without algal endosymbionts, symbionts can be acquired either horizontally or vertically, and proliferation of the algae can occur with or without photosynthesis.
Project description:In this project, the metaproteome of the marine bacterioplankton was analyzed to assess its respone towards an algal bloom in the southern North Sea in spring 2010. Proteins were extracted applying two different methods: (i) applying chemical cell lysis using trifluoroethanol in combination with in-solution digest and (ii) mechanical cell lysis applying bead beating, SDS-PAGE prefractionation and in-gel digest. Both samples were analyzed by nanoLC and ESI-iontrap MS. In case of the TFE lysis samples, also nanoLC-MALDI-TOF MS was applied.
Project description:Protein present in phytoplankton represents a large fraction of the organic nitrogen and carbon transported from its synthesis in surface waters to marine sediments. Yet relatively little is known about the longevity of identifiable protein in situ, or the potential modifications to proteins that occur during bloom termination, protein recycling and degradation. To address this knowledge gap, diatom-dominated phytoplankton was collected during the Bering Sea spring blooms of 2009 and 2010, and incubated under darkness in separate shipboard degradation ex periments spanning 11 and 53 d, respectively. In each experiment, the protein distribution was monited over time using shotgun proteomics, along with total hydrolyzable amino acids (THAAs), total protein, particulate organic carbon (POC) and nitrogen (PN), and bacterial cell abundance. Identifiable proteins, total protein and THAAs were rapidly lost during the first 5 d of enclosure in darkness in both incubations. Thereafter the loss rate was slower, and it declined further after 22 d. The initial loss of identifiable biosynthetic, glycolysis, metabolism and translation proteins after 12 h may represent shutdown of cellular activity among algal cells. Additional peptides with glycan modifications were identified in early incubation time points, suggesting that such protein modifications could be used as a marker for internal recycling processes and possibly cell death. Protein recycling was not uniform, with a subset of algal proteins including fucoxanthin chlorophyll binding proteins and RuBisCO identified after 53 d of degradation. Non-metric multidimensional scaling was used to compare the incubations with previous environmental results. The results confirmed recent observations that some fraction of algal proteins can survive water column recycling and undergo transport to marine sediments, thus contributing organic nitrogen to the benthos.
Project description:LC-MS analysis of algal and marine DOM at Oregon State University (Boiteau Lab) as part of the "Inter-Laboratory Comparison of LC-MS analysis of algal and marine DOM" study by the Inter-Lab LC-MS/MS Consortium
Project description:Animal regeneration requires coordinated responses of many cell types throughout the animal body. In animals carrying endosymbionts, cells from the other species may also participate in regeneration, but how cellular responses are integrated across species is yet to be unraveled. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis green algae and can regenerate entire bodies from small tissue fragments. We show that animal injury leads to a decline in the photosynthetic efficiency of the symbiotic algae and concurrently induces upregulation of a cohort of photosynthesis-related genes. A deeply conserved animal transcription factor, runt, is induced after injury and required for the acoel regeneration. Knockdown of runt also dampens algal transcriptional responses to the host injury, particularly in photosynthesis related pathways, and results in further reduction of photosynthetic efficiency post-injury. Our results suggest that the runt-dependent animal regeneration program coordinates wound responses across the symbiotic partners and regulates photosynthetic carbon assimilation in this metaorganism.
Project description:<p>Algal blooms are hotspots of primary production in the ocean, forming the basis of the marine food web and fueling the dissolved organic matter (DOM) pool. Marine viruses are key players in controlling algal bloom demise, thereby diverting algal biomass from higher trophic levels to the DOM pool, a process termed the ‘viral shunt’. To decode the metabolic footprint of the ‘viral shunt’ in the marine environment, we induced a bloom of <em>Emiliania huxleyi</em> and followed its succession using an untargeted exometabolomics approach. Here, we show that algal bloom succession induces dynamic changes in the exometabolic landscape. We discovered a set of novel chlorine-iodine-containing metabolites that were induced by viral infection and released during bloom demise. These metabolites were further detected in virus-infected oceanic <em>E. huxleyi</em> blooms. Therefore, we propose that halogenation with both chlorine and iodine is a distinct hallmark of the virus-induced DOM of <em>E. huxleyi</em>, providing insights into the metabolic consequences of the ‘viral shunt’ for marine DOM.</p>