Project description:Delivery of the baby before 37 weeks of completed gestation is deemed to be preterm birth. Admission of these preterm infants to the conventional neonatal intensive care unit (NICU) to manage their fragile physiology also tends to cause considerable stress that impedes the baby’s normal development. A recent innovation in neonatal care is the mother-neonatal ICU (MNICU), where the mother is not a mere visitor but has her bed inside the MNICU by the baby’s side. This study enrolled 200 low birth weight preterm babies (gestational age 28-37 weeks; weight 0.800–1.8 kg) randomized to MNICU & NICU. Saliva was collected from the 200 preterm neonates at the time of admission and discharge. We measured cortisol levels in the saliva of these samples, as the hormone is an established biomarker for stress. Salivary proteomics was also performed on 12 pairs of salivary samples chosen on basis of significant growth and development of these neonates. To study the differential proteome signature in these conditions MS-based data independent acquisition identified and quantified 342 and 308 protein groups, respectively. Differential protein analysis of these proteins revealed 41 differentially expressed proteins (DEPs). Pathway enrichment of unique DEPs in MNICU vs NICU comparison revealed improvement in immunity and metabolism-associated pathways at discharge. Quantitative analysis of the standard proteins from arrival and discharge groups revealed differential expression of these proteins. In differential expression analysis, we identified 28 upregulated and 16 downregulated proteins in neonates admitted to MNICU compared to NICU. A similar analysis for neonates at discharge identified 22 upregulated and 19 downregulated proteins. Further pathway enrichment of differential proteins unique to each group; 22 DEPs were present only in the arrival group, and 19 were in the discharge group. The data show a marked, statistically significant improvement in the overall well-being of preterm children admitted to MNICU and provided KMC compared to the NICU group. Thus, our study provides evidence in favor of easily available, cost-effective care that can make huge difference in the outcome of preterm neonates, particularly in low-income settings.
Project description:Neonatal molecular biomarkers of neurobehavioral responses (measures of brain-behavior relationships), when combined with neurobehavioral performance measures, could lead to better predictions of long-term developmental outcomes. To this end, we examined whether variability in epigenomic measures from buccal cells were associated with neurobehavioral profiles in a cohort of infants born less than 30 weeks postmenstrual age (PMA) and participating in the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) Study (N=536). We tested whether epigenetic age, age acceleration, or DNA methylation (DNAm) levels at individual loci, measured via the Illumina EPIC microarray, differed between infants based on their NICU Network Neurobehavioral Scale (NNNS) profile classifications, ranging from most optimal to atypical. We adjusted for recruitment site, infant sex, PMA, and tissue heterogeneity. Infants with an optimally well-regulated NNNS profile had older epigenetic age compared to other NOVI infants (β1 = 0.201, p-value = 0.026), but no significant difference in age acceleration. In contrast, infants with an atypical NNNS profile had differential methylation at 29 CpG sites (FDR < 10%). Some of the genes annotated to these CpGs included PLA2G4E, TRIM9, GRIK3, and MACROD2, which have previously been associated with neurological structure and function, or with neurobehavioral disorders. These findings contribute to the existing evidence that neonatal epigenetic variations in buccal cells may be informative for infant neurobehavior.
Project description:Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which in turn changes the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology and gene expression, day 21-old germ-free mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity however, SMM mice had higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there were higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 (ILC2) were increased in MFM mice supplemented with HMOs while in the spleen, they were increased in SMM+HMOs mice. Similarly, serum immunoglobulin A (IgA) was also elevated in MFM+HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data shows that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response and intestinal gene expression in a mouse model.
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups
Project description:Very preterm infants (VPIs) are born with an immature gut and predisposed to gut microbiota dysbiosis-related diseases, for example, necrotizing enterocolitis. Although fortification of human milk is required for these infants, the optimal fortifier remains uncertain. Bovine colostrum (BC), rich in protein and bioactive components, could serve as an alternative to conventional fortifiers (CF). The gut microbiota (GM) of 225 VPIs fed human milk fortified with either BC or CF (FortiColos study, NCT03537365) was profiled by 16S rRNA gene amplicon sequencing of fecal samples collected before, and after 1 and 2 weeks of fortification. Birth mode exhibited transient effects on the microbial community structure shortly after birth, with cesarean section-born VPIs dominated by Firmicutes, whereas vaginally born VPIs were dominated by Proteobacteria. This birth mode-derived difference diminished with age and disappeared around 1 month after birth. Fortifier type affected the microbial community structure to a modest extent, but no specific taxa significantly differed between the BC and CF groups. Fecal pH, increased by BC, was positively correlated with Staphylococcus and Corynebacterium and negatively with Bifidobacterium abundance. Change in the relative abundance of Staphylococcus was negatively correlated with body weight gain. Collectively, fortification of human milk with BC or CF does influence the GM of VPIs but only to a modest extent during early life. Birth mode appears to have a significant, but temporary influence on the GM during this period.IMPORTANCEEarly life is a key period for gut microbiota (GM) establishment, where enteral feeding plays a significant role. This is also the case for infants born preterm, who, due to their immature gut, are at a high risk of developing GM dysbiosis-related diseases. Human milk is the optimal feed for preterm infants, but it requires fortification to reach adequate levels of especially protein. Only a few studies have investigated the impact of fortifiers on GM development in preterm infants. Here, we demonstrate that two different bovine milk-based fortifiers, bovine colostrum and a conventional fortifier based on mature bovine milk, exhibit limited effects on the microbial community structure of very preterm infants. These findings suggest that although great care in terms of optimally maturing the preterm infant GM should be taken, the choice of fortifier only has limited impact. In clinical practice, the choice of fortifier can thus be fully focussed on optimizing preterm infant nutrition.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT03537365.
Project description:The link between human gut microbiota (a complex group of microorganisms including not only bacteria but also fungi, viruses, etc.,) and the physiological state is nowadays unquestionable. Metaproteomic has emerged as a useful technique to characterize this microbial community, not just taxonomically, but also focusing on specific biological processes carried out by gut microbiota that may have an effect in the host health or pathological state. Cystic fibrosis is a genetic disease in which the microbiota of the respiratory tract determines the patient's survival and differences in composition of gut microbiota of cystic fibrosis patients respect to healthy infants have been reported. In order to characterize this host-microbiota inter-relation, we carried out the metaproteomic study of 30 stool samples from infants with cystic fibrosis.
Project description:BackgroundPreterm infants are at high risk for growth failure and childhood weight problems due to the disruption of normal intrauterine growth and nutrition. Early nutritional support and microbiome acquisition can play an important role in childhood growth.ObjectiveOur study examined potential postnatal indicators, including gut bacterial compositions, macronutrients, and catch-up growth, of growth pattern from infancy into early childhood.MethodsThis is a retrospective study of preterm infants born < 35 weeks who were followed up in the university complex care clinic from 2012-2018. Weight and length z-scores at birth, 1, 2, 4, 6, 12 and 15 months, and body mass index (BMI) and length z-scores from 2 to 5 years of age were collected. Catch-up growths were calculated by changes in z-scores and divided into early (birth-4 months) and late (4-18 months). Postnatal nutritional data and fecal samples were collected. Fecal microbiome data obtained from 16S RNA V4 sequencing was analyzed against clinical and growth data using a regression model.Results160 infants included in the final analysis had birth weight and gestational age of 1,149 ± 496 grams and 28 ± 3 weeks. Early weight gain positively correlated with length z-scores but not with BMI at 2 years of age. BMI at 2 years of age strongly correlated with BMI at 3, 4, and 5 years of age. Postnatal abundance of Gammaproteobacteria was negatively associated with early growth while Bacteroides and Lactobacillus were positively associated with childhood BMI.ConclusionOur findings suggest that optimal postnatal nutrition promoted early catch-up growth in weight as well as improved linear growth without influence on childhood BMI. Postnatal gut microbial colonization, which is a modifiable factor, was associated with childhood growth in preterm infants.