Project description:We observed that deletion of polyketide synthase (pks) from E. coli NC101 reduces its ability to induce tumors in interleukin-10 knockout (Il10-/-) mice injected with azoxymethane (AOM), without altering histologic inflammation. The goal of this experiment is to assess inflammatory cytokine levels in colonic tissue of these mice. 2 germ-free Il10-/- mice were assayed and used as controls. 3 E. coli NC101 and 3 E. coli NC101-delta-pks monoassociated mice were experimental samples.
Project description:We observed that deletion of polyketide synthase (pks) from E. coli NC101 reduces its ability to induce tumors in interleukin-10 knockout (Il10-/-) mice injected with azoxymethane (AOM), without altering histologic inflammation. The goal of this experiment is to assess inflammatory cytokine levels in colonic tissue of these mice.
Project description:The goal of this experiment is compare gene expression profiles between C. acetobutylicum wild-type and pks mutant strains to determine which genes might be under the control of self-produced polyketides. Samples for RNA-seq comparison were taken from batch fermentation cultures 26 hours post-inoculation.
Project description:<p>Natural products from microorganisms are important sources for drug discovery. With the development of high-throughput sequencing technology and bioinformatics, a large amount of uncharacterized biosynthetic gene clusters (BGCs) in microorganisms have been found, which show the potential for novel natural product production. 9 BGCs containing PKS and/or NRPS in <em>Streptomyces globisporus</em> C-1027 were transcriptionally low/silent under the experimental fermentation conditions, and the products of these clusters are unknown. Thus, we tried to activate these BGCs to explore cryptic products of this strain. We constructed the cluster-situated regulator overexpressing strains which contained regulator gene(s) under the control of the constitutive promoter <em>ermE</em>*p in <em>S. globisporus</em> C-1027. Overexpression of regulators in cluster 26 resulted in significant transcriptional upregulation of biosynthetic genes. With the separation and identification of products from the overexpressing strain OELuxR1R2, 3 <em>ortho</em>-methyl phenyl alkenoic acids (compounds <strong>1-3</strong>) were obtained. Gene disruption showed that compounds <strong>1</strong> and <strong>2</strong> were completely abolished in the mutant GlaEKO, but were hardly affected by deletion of the genes <em>orf3</em> or <em>echA</em> in cluster 26. The type II PKS biosynthetic pathway of chain-extended cinnamoyl compounds was deduced by bioinformatics analysis. This study showed that overexpression of the 2 adjacent cluster-situated LuxR regulator(s) is an effective strategy to connect the orphan BGC to its products.</p>
Project description:Pathogenic bacteria rely on the stringent response to adapt to hostile environments encountered within the host. However, the mechanisms by which host-induced stress activates this response remain poorly understood. Here, we identify iron-sulfur (Fe-S) cluster damage as a conserved trigger of the stringent response in major Gram-negative pathogens, including Salmonella enterica, Enterobacter cloacae, and Klebsiella pneumoniae. We demonstrate that Fe-S cluster disruption—triggered by oxidative stress or metal imbalance—limits intracellular pools of sulfur-containing and branched-chain amino acids, thereby activating the (p)ppGpp synthetase RelA. We further show that during Fe-S cluster stress, (p)ppGpp plays a dual role: enhancing bacterial fitness and promoting virulence by upregulating the Salmonella SPI-2 type III secretion system. These findings reveal a conserved mechanism by which pathogenic bacteria integrate host-associated stresses into an adaptive transcriptional response that promotes fitness and virulence, highlighting Fe-S cluster integrity as a central hub for environmental sensing during infection.
Project description:Various species of the intestinal microbiota have been associated with the
development of colorectal cancer (CRC), yet a direct role of bacteria in the
occurrence of oncogenic mutations has not been established. Escherichia coli can
carry the pathogenicity island pks, which encodes a set of enzymes that
synthesize colibactin. This compound alkylates DNA on adenine residues and
induces double strand breaks in cultured cells. Here, we exposed human intestinal
organoids to genotoxic pks+ Escherichia coli by repeated luminal injection over a
period of 5 months. Whole genome sequencing (WGS) of clonal organoids before
and after this exposure reveals a distinct mutational signature, absent from
organoids injected with isogenic pks-mutant bacteria. The same mutational
signature is detected in a subset of 3668 human metastatic cancer genomes,
predominantly in a subset of CRC cases. Our study describes a distinct mutational
signature in CRC and implies that the underlying mutational process directly
results from past exposure to bacteria carrying the colibactin-producing pks
pathogenicity island.