Project description:Animal-algal photosymbioses are a unique group of symbiotic relationships in which animals harbor photosynthetic algae within their cells and tissues. Both marine and freshwater sponges host algal endosymbionts. In previous work, we demonstrated that freshwater sponges can acquire these endosymbionts horizontally through algal infection and that potentially conserved evolutionary pathways may lead to the establishment of the endosymbioses including those involved in endocytosis, ion transport, vesicle-mediated transport, innate immunity, redox regulation, and metabolic processes. Here, we show that algal symbionts can be transferred vertically from algal-bearing overwintering gemmules to adult sponges, and that their proliferation is enhanced by light. Sponges grown under light conditions harbored higher algal loads than those in the dark; however, algae were still able to proliferate and persist in sponges reared in the dark, occupying similar spatial locations to those grown in light. RNA-Seq analysis of algal-bearing sponges across developmental stages in light and dark conditions revealed genetic regulatory pathways involved in the transmission and establishment of the endosymbiosis. Differential expression analysis indicated that the endocytosis and SNARE pathways regulate the internalization and transport of algae at the earliest stage of hatching under light conditions and later in development under dark conditions, potentially contributing to the recruitment of endosymbiotic algae. In sponges hatched in the dark, genes involved in vesicle acidification are regulated, alongside changes in the expression of genes in the pentose phosphate pathway - a key metabolic route involved in redox homeostasis and circadian rhythm regulation via NADPH metabolism, is observed. E. muelleri serves as a versatile model system, supported by robust genomic and transcriptomic resources, for studying host-symbiont interactions. It offers a unique opportunity to investigate the molecular signaling and environmental factors that shape symbiosis in a system where the host can exist with or without algal endosymbionts, symbionts can be acquired either horizontally or vertically, and proliferation of the algae can occur with or without photosynthesis.
Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi. 6 different conditions were analyzed, each consisting of two biological replicates. These included Rhizopus microsporus ATCC52813 (sex +) growing alone with endosymbionts, R. microsporus ATCC52814 (sex -) growing alone with endosymbionts, ATCC 52813 growing alone without endosymbionts, ATCC52814 growing alone without endosymbionts, ATCC52813 and ATCC52814 growing together with endosymbionts (successfully mating), and ATCC52813 and ATCC52814 growing together without endosymbionts (failure to mate). In each condition, fungi were cultivated on half-strength PDA and plugs of mycelium were placed at the edge of the plate. After 6 days, approximately 2.5 cm of tissue were harvested from the center of the plate. Each biological replicate consists of 5 plates which were pooled prior to RNA extraction to ensure sufficient tissue was collected.
Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi.
2017-05-13 | GSE57644 | GEO
Project description:Algal diversity in Amphistegina