Project description:The skin mucus of gilthead sea bream was mapped by 1-DE followed by liquid chromatography coupled to high resolution mass spectrometry using a quadrupole time-of-flight mass analyzer. More than 2000 proteins were identified with a protein score filter of 30. The identified proteins were represented in 418 canonical pathways of the Ingenuity Pathway software. After filtering by canonical pathway overlapping, the retained proteins were clustered in three groups. The mitochondrial cluster contained 59 proteins related to oxidative phosphorylation and mitochondrial dysfunction. The second cluster contained 79 proteins related to antigen presentation and protein ubiquitination pathways. The third cluster contained 257 proteins where proteins related to protein synthesis, cellular assembly, and epithelial integrity were over-represented. The latter group also included acute phase response signaling. In parallel, 2-DE methodology identified six proteins spots of different protein abundance when comparing unstressed fish with chronically stressed fish in an experimental model that mimicked daily farming activities. The major changes were associated with a higher abundance of cytokeratin 8 in the skin mucus proteome of stressed fish, which was confirmed by immunoblotting. Overall, these results indicate that skin mucus is a reliable tissue for alternative or complementary stress phenotyping in fish farming.
Project description:Using RNAseq of small RNA libraries isolated from the gill tissue of the Antarctic fish Trematomus bernacchii we have characterized the termal sensitivity of miRNA homologues in these highly stenothermic fish.
Project description:Quinoa is widely recognized for its exceptional nutritional properties, particularly its complete protein content. This study, for the first time, investigates the effects of processing methods (boiling and extrusion) and farming conditions (conventional and organic) on the quinoa’s proteomic profile. Following a label-free shotgun proteomics approach, a total of 1,796 proteins were identified and quantified across all quinoa samples. Regarding processing, both boiling and extrusion produced protein extracts with lower total protein content, with the number of identified proteins decreasing from 1,695 in raw quinoa to 957 in processed quinoa. Boiling led to a reduction in protein diversity and expression, while extrusion, which involves high temperatures and pressures, specifically decreased the abundance of high molecular mass proteins. Concerning cultivation practices, organic farming was associated with a broader protein diversity, especially proteins related to translation (28% vs. 5%), while conventional farming showed a higher abundance of catalytic and enzymatic proteins (67% vs. 46%). These findings highlight the distinct proteomic changes induced by different processing methods and farming conditions, offering valuable insights to manage quinoa’s nutritional, bioactive, and functional properties across various production practices.