Project description:Using RNAseq of small RNA libraries isolated from the gill tissue of the Antarctic fish Trematomus bernacchii we have characterized the termal sensitivity of miRNA homologues in these highly stenothermic fish.
Project description:Mandarin fish Siniperca chuatsi (Basilewsky) (Percichthyidae), as a demersal piscivore, has very specialized feeding habits, for as soon as they start feeding the fry of this fish feed solely on fry of other fish species. In rearing conditions, mandarin fish has been found to accept live prey fish only, and refuse dead prey fish or artificial diets, very little is currently known about the molecular mechanisms of multiple genes which cover different pathways influencing the specialized food habit, such as live prey. We performed transcriptome comparisons between dead prey fish feeders and nonfeeders in mandarin fish. The determination mechanisms of specialized food habit (live prey fish) in mandarin fish could provide some instructions for research of food habit in animals, including mammals.
Project description:Seafood fraud has become a global emerging issue, threatening food security and safety. Adulteration, substitution, dilution, and incorrect labeling of seafood products are fraudulent practices that violate consumer safety. In this context, developing sensitive, robust, and high-throughput molecular tools for food and feed authentication is becoming crucial for regulatory purposes. Analytical approaches such as proteomics mass spectrometry have shown promise in detecting incorrectly labeled products. For the application of these tools, genome information is crucial, but currently, for marine species of commercial importance, such information is unavailable. However, when combining proteomic analysis with spectra library matching, commercially important fish species were successfully identified, differentiated, and quantified in pure muscle samples and mixtures, even when genome information was scarce. This study further tested the previously developed proteomic-based spectra library-based approach was further tested to differentiate 29 fish species from the North Sea in individual samples, laboratory-prepared mixtures, and commercial samples. For authenticating libraries generated from 29 fish species, fresh muscle samples from the fish samples were matched against the reference libraries. Species of the fresh fish samples were correctly authenticated using the spectra libraries generated from the 29 fish species. Furthermore, processed commercial products containing mixtures of two or three fish species were matched against these spectra libraries to test the accuracy and robustness of this method for authentication of fish species. The results indicated that the method is suitable for the authentication of fish species from highly processed samples such as fish cakes and burgers. Spectra libraries built from 29 fish species in the North Sea can efficiently tackle current and future challenges in feed and food authentication analyses when prospecting new resources in the Arctic.