Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:We present metaproteome data from maize rhizosphere from sodic soil. Isolation of proteome from maize rhizosphere collected from Experimental Farm, ICAR-IISS, Mau, India was done with the standardized protocol at our laboratory and metaproteome analysis was done with the standardized pipepline. In total 696 proteins with different functions representing 245 genus and 395 species were identified. The proteome data provides direct evidence on the biological processes in soil ecosystem and is the first reported reference data from maize rhizosphere.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Cover cropping is an effective method to protect agricultural soils from erosion, promote nutrient and moisture retention, encourage beneficial microbial activity, and maintain soil structure. Reusing winter cover crop root channels with the maize roots during the summer allows the cash crop to extract resources from farther niches in the soil horizon. In this study, we investigate how reusing winter cover crop root channels to grow maize (Zea mays L.) affects the composition and function of the bacterial communities in the rhizosphere using 16S rRNA gene amplicon sequencing and metaproteomics. We discovered that the bacterial community significantly differed among cover crop variations, soil profile depths, and maize growth stages. Re-usage of the root channels increased bacterial abundance, and it further increases as we elevate the complexity from monocultures to mixtures. Upon mixing legumes with brassicas and grasses, the overall expression of several steps of the carbon cycle (C) and the nitrogen cycle (N) improved. The deeper root channels of legumes and brassicas compared to grasses correlated with higher bacterial 16S rRNA gene copy numbers and community roles in the respective variations in the subsoil regimes due to the increased availability of root exudates secreted by maize roots. In conclusion, root channel re-use (monocultures and mixtures) improved the expression of metabolic pathways of the important C and N cycles, and the bacterial communities, which is beneficial to the soil rhizosphere as well as to the growing crops.