Project description:The microbial biogas network is complex and intertwined, and therefore relatively stable in its overall functionality. However, if key functional groups of microorganisms are affected by biotic or abiotic factors, the entire efficacy may be impaired. Bacteriophages are hypothesized to alter the steering process of the microbial network. In this study, an enriched fraction of virus-like particles was extracted from a mesophilic biogas reactor and sequenced on the Illumina MiSeq and Nanopore GridION sequencing platforms. Metagenome data analysis resulted in identifying 375 metagenome-assembled viral genomes (MAVGs). Two-thirds of the classified sequences were only assigned to the superkingdom Viruses and the remaining third to the family Siphoviridae, followed by Myoviridae, Podoviridae, Tectiviridae, and Inoviridae. The metavirome showed a close relationship to the phage genomes that infect members of the classes Clostridia and Bacilli. Using publicly available biogas metagenomic data, a fragment recruitment approach showed the widespread distribution of the MAVGs studied in other biogas microbiomes. In particular, phage sequences from mesophilic microbiomes were highly similar to the phage sequences of this study. Accordingly, the virus particle enrichment approach and metavirome sequencing provided additional genome sequence information for novel virome members, thus expanding the current knowledge of viral genetic diversity in biogas reactors.
Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.
Project description:Biogas plants (BGPs) produce methane and carbon dioxide through the anaerobic digestion of agricultural waste. Identification of strategies for more stable biogas plant operation and increased biogas yields require better knowledge about the individual degradation steps and the interactions within the microbial communities. The metaprotein profiles of ten agricultural BGPs and one laboratory reactor were investigated using a metaproteomics pipeline. Fractionation of samples using SDS-PAGE was combined with a high resolution Orbitrap mass spectrometer, metagenome sequences specific for BGPs, and the MetaProteomeAnalyzer software. This enabled us to achieve a high coverage of the metaproteome of the BGP microbial communities. The investigation revealed approx. 17,000 protein groups (metaproteins), covering the majority of the expected metabolic networks of the biogas process such as hydrolysis, transport, fermentation processes, amino acid metabolism, methanogenesis and bacterial C1-metabolism. Biological functions could be linked with the taxonomic composition. Two different types of BGPs were classified by the abundance of the acetoclastic methanogenesis and by abundance of enzymes implicating syntrophic acetate oxidation. Linking of the identified metaproteins with the process steps of the Anaerobic Digestion Model 1 proved the main model assumptions but indicated also some improvements such as considering syntrophic acetate oxidation. Beside the syntrophic interactions, the microbial communities in BGPs are also shaped by competition for substrates and host-phage interactions causing cell lysis. In particular, larger amounts of Bacteriophages for the bacterial families Bacillaceae, Enterobacteriaceae and Clostridiaceae, exceeding the cell number of the Bacteria by approximately four-fold. In contrast, less Bacteriophages were found for Archaea, but more CRISPR proteins were detected. On the one hand, the virus induced turnover of biomass might cause slow degradation of complex biomass in BGP. On the other hand, the lysis of bacterial cells allows cycling of essential nutrients.
Project description:hvKP ATCC43816 and its lytic phage H5 were employed as a phage-antibiotic combination model. Based on the comprehensive characterization of phages, including cryo-electron microscopy, we evaluated the synergic effect of H5 on bacterial killing in vitro when combined with multiple antibiotics, and analyzed the advantages of phage-antibiotic combinations from an evolutionary perspective and proposes a novel PAS mechanism by using ceftazidime as an example.
Project description:Virulent bacteriophages (or phages) are viruses that specifically infect and lyse a bacterial host. When multiple phages co-infect a bacterial host, the extent of lysis, dynamics of bacteria-phage and phage-phage interactions are expected to vary. The objective of this study is to identify the factors influencing the interaction of two virulent phages with different Pseudomonas aeruginosa growth states (planktonic, an infected epithelial cell line, and biofilm) by measuring the bacterial time-kill and individual phage replication kinetics. A single administration of phages effectively reduced P. aeruginosa viability in planktonic conditions and infected human lung cell cultures, but phage-resistant variants subsequently emerged. In static biofilms, the phage combination displayed initial inhibition of biofilm dispersal, but sustained control was achieved only by combining phages and meropenem antibiotic. In contrast, adherent biofilms showed tolerance to phage and/or meropenem, suggesting a spatiotemporal variation in the phage-bacterial interaction. The kinetics of adsorption of each phage to P. aeruginosa during single- or co-administration were comparable. However, the phage with the shorter lysis time depleted bacterial resources early and selected a specific nucleotide polymorphism that conferred a competitive disadvantage and cross-resistance to the second phage. The extent and strength of this phage-phage competition and genetic loci conferring phage resistance, are, however, P. aeruginosa genotype dependent. Nevertheless, adding phages sequentially resulted in their unimpeded replication with no significant increase in bacterial host lysis. These results highlight the interrelatedness of phage-phage competition, phage resistance and specific bacterial growth state (planktonic/biofilm) in shaping the interplay among P. aeruginosa and virulent phages.
Project description:Bacteriophage – host dynamics and interactions are important for microbial community composition and ecosystem function. Nonetheless, empirical evidence in engineered environment is scarce. Here, we examined phage and prokaryotic community composition of four anaerobic digestors in full-scale wastewater treatment plants (WWTPs) across China. Despite relatively stable process performance in biogas production, both phage and prokaryotic groups fluctuated monthly over a year of study period. Nonetheless, there were significant correlations in their α- and β-diversities between phage and prokaryotes. Phages explained 40.6% of total prokaryotic community composition, much higher than the explainable power by abiotic factors (14.5%). Consequently, phages were significantly (P<0.010) linked to parameters related to process performance including biogas production and volatile solid concentrations. Association network analyses showed that phage-prokaryote pairs were deeply rooted, and two network modules were exclusively comprised of phages, suggesting a possibility of co-infection. Those results collectively demonstrate phages as a major biotic factor in controlling bacterial composition. Therefore, phages may play a larger role in shaping prokaryotic dynamics and process performance of WWTPs than currently appreciated, enabling reliable prediction of microbial communities across time and space.
Project description:Dinoroseobacter shibae DFL12T was cultured with/without phage R2C, and gene expression was analyzed at 60 min and 140 min during the incubation
Project description:Genomic material isolated from purified phage YerA41 lysate was shown to contain RNA. YerA41 phage lysate was RNase treated to remove phage-external RNA and total RNA was then isolated from the phage preparate using Qiagen Rneasy mini kit. The isolated RNA was sequenced to elucidate its origin. The results suggested that the RNA originated from intact ribosomes of the host bacterium that contaminated the phage lysate.
Project description:To better understand host/phage interactions and the genetic bases of phage resistance in a model system relevant to potential phage therapy, we isolated several spontaneous mutants of the USA300 S. aureus clinical isolate NRS384 that were resistant to phage K. Six of these had a single missense mutation in the host rpoC gene, which encodes the RNA polymerase beta prime subunit. To examine the hypothesis that the mutations in the host RNA polymerase affect the transcription of phage genes, we performed RNA-seq analysis on total RNA samples collected from NRS384 wild-type (WT) and rpoC G17D mutant cultures infected with phage K, at different time points after infection. Infection of the WT host led to a steady increase of phage transcription relative to the host. Our analysis allowed us to define different early, middle, and late phage genes based on their temporal expression patterns and group them into transcriptional units. Predicted promoter sequences defined by conserved -35, -10, and in some cases extended -10 elements were found upstream of early and middle genes. However, sequences upstream of late genes did not contain clear, complete, canonical promoter sequences, suggesting that factors in addition to host RNA polymerase are required for their regulated expression. Infection of the rpoC G17D mutant host led to a transcriptional pattern that was similar to the WT at early time points. However, beginning at 20 minutes after infection, transcription of late genes (such as phage structural genes and host lysis genes) was severely reduced. Our data indicate that the rpoCG17D mutation prevents the expression of phage late genes, resulting in a failed infection cycle for phage K. In addition to illuminating the global transcriptional landscape of phage K throughout the infection cycle, these studies can inform our investigations into the bases of phage K’s control of its transcriptional program as well as mechanisms of phage resistance.