Project description:Relative expression levels of mRNAs in chicken cecal epithelia experimentally infected with Eimeria tenella were measured at 4.5 days post-infection. Two weeks old chickens were uninfected (negative control) or were orally inoculated with sporulated oocysts of Eimeria tenella. Cecal epithelia samples were collected from >12 birds in infected or uninfected group at 4.5 d following infections, in which samples from 4 birds were pooled together to form a total 3 biological replicates in each group. Parasite merozoites were also collected from four infected chickens at 5 d after infections. Uninfected control samples, merozoites and infection group samples were selected for RNA extraction and hybridization on Affymetrix microarrays. We used Affymetrix GeneChip chicken genome arrays to detail the chicken cecal epithelia gene expression in the control and E. tenella-infected birds.
Project description:Relative expression levels of mRNAs in chicken cecal epithelia experimentally infected with Eimeria tenella were measured at 4.5 days post-infection. Two weeks old chickens were uninfected (negative control) or were orally inoculated with sporulated oocysts of Eimeria tenella. Cecal epithelia samples were collected from >12 birds in infected or uninfected group at 4.5 d following infections, in which samples from 4 birds were pooled together to form a total 3 biological replicates in each group. Parasite merozoites were also collected from four infected chickens at 5 d after infections. Uninfected control samples, merozoites and infection group samples were selected for RNA extraction and hybridization on Affymetrix microarrays. We used Affymetrix GeneChip chicken genome arrays to detail the chicken cecal epithelia gene expression in the control and E. tenella-infected birds. Infected, uninfected chicken cecal epithelia and merozoites were selected for RNA extraction and hybridization with Affymetrix microarrays. Our goal was to analyze global transcriptome changes in chicken cecal mucous membranes in response to E. tenella infection in vivo. We used infected (T1,T2,T3; three biological replicates) and uninfected (Neg1, Neg2, Neg3; three biological replicates) samples to identify genes that were differentially expressed. Meanwhile, RNA and probes were also prepared from parasite merozoites (Mzt) from infected samples (Mzt) and used as an additional control in microarray hybridization.
Project description:We collected caecal contents from 30 chickens divided into 5 groups (6 birds per group) with each group receiving different quantity of soluble inulin and insoluble cellulose. We isolated DNA, RNA, and proteins to perform metagenomics, metatranscriptomics, and metaproteomics analysis, respectively.
Project description:The expression of genes were analysed in 7th day of embryonic stage between Aseel, an indigenous slow-growing chicken, and control broiler, a fast-growing broiler chicken line. The whole embryo was collected in TRIZOL and total RNA was isolated. The expression profile of gene was determined in 64k Agilent chicken microarray chip. The Cy3 dye was used for detection. The fold change of expression was analysed in Aseel as compared to broiler chicken line.
Project description:The expression of genes were analysed in muscle of 18th day of embryonic stage between Aseel, an indigenous slow-growing chicken, and control broiler, a fast-growing broiler chicken line. The whole embryo was collected in TRIZOL and total RNA was isolated. The expression profile of gene was determined in 64k Agilent chicken microarray chip. The Cy3 dye was used for detection. The fold change of expression was analysed in Aseel as compared to broiler chicken line.
Project description:Carnosine is a bioactive food component with several potential health benefits for humans due to its physiological functions. Dietary supplementation with β-alanine or L-histidine can increase the carnosine content of skeletal muscles in chickens. Dietary supplementation with β-alanine or L-histidine has produced a slow-growing chicken variety with high carnosine content in the breast meat; however, the supplementation with L-histidine alone softens the meat toughness, which may affect consumers’ willingness to buy the meat. Gene expression is a key factor that influences meat quality. Understanding the molecular mechanisms that affect carnosine content and meat toughness would allow the production of more value-added slow-growing chickens. We compared global gene expression in chicken breast muscles with differing carnosine contents and meat toughness produced through dietary supplementation with β-alanine or L-histidine. We identified differentially expressed genes involved in regulating myosin, collagen, intramuscular fat, and calpain—factors that may affect meat tenderness. Pathway enrichment analysis indicated that the insulin-related and adipocytokine signaling pathways were altered by dietary supplementation with β-alanine or L-histidine. These data will be useful for future studies on carnosine content and meat toughness in slow-growing chickens.