Project description:Alternative splicing of messenger RNAs is associated with the evolution of developmentally complex eukaryotes. Splicing is mediated by the spliceosome, and docking of the pre-mRNA 5' splice site into the spliceosome active site depends upon pairing with the conserved ACAGA sequence of U6 snRNA. In some species, including humans, the central adenosine of the ACAGA box is modified by N6 methylation, but the role of this m6A modification is poorly understood. Here, we show that m6A modified U6 snRNA determines the accuracy and efficiency of splicing. We reveal that the conserved methyltransferase, FIONA1, is required for Arabidopsis U6 snRNA m6A modification. Arabidopsis fio1 mutants show disrupted patterns of splicing that can be explained by the sequence composition of 5' splice sites and cooperative roles for U5 and U6 snRNA in splice site selection. U6 snRNA m6A influences 3' splice site usage. We generalise these findings to reveal two major classes of 5' splice site in diverse eukaryotes, which display anti-correlated interaction potential with U5 snRNA loop 1 and the U6 snRNA ACAGA box. We conclude that U6 snRNA m6A modification contributes to the selection of degenerate 5' splice sites crucial to alternative splicing.
Project description:N6-methyladenosine (m6A) is a modification that plays pivotal roles in RNA metabolism and function, although its functions in spliceosomal U6 snRNA remain unknown. To elucidate its role, we conduct a large-scale transcriptome analysis of a Schizosaccharomyces pombe strain lacking this modification and found a global change of pre-mRNA splicing. The most significantly impacted introns are enriched for adenosine at the fourth position pairing the m6A in U6 snRNA, and exon sequences weakly recognized by U5 snRNA. This suggests cooperative recognition of 5' splice site by U6 and U5 snRNPs, and also a role of m6A facilitating efficient recognition of the splice sites weakly interacting with U5 snRNA, indicating that U6 snRNA m6A relaxes the 5' exon constraint and allows protein sequence diversity along with explosively increasing number of introns over the course of eukaryotic evolution.
Project description:The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2'-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator.
Project description:Major structural changes occur in the spliceosome during its catalytic activation, which immediately precedes the splicing of pre-mRNA. Whereas changes in snRNA conformation are well documented at the level of secondary RNA-RNA interactions, little is known about the tertiary structure of this RNA-RNA network, which comprises the spliceosome's catalytic core. Here, we have used the hydroxyl-radical probe Fe-BABE, tethered to the tenth nucleotide (U(+10)) of the 5' end of a pre-mRNA intron, to map RNA-RNA proximities in spliceosomes. These studies revealed that several conserved snRNA regions are close to U(+10) in activated spliceosomes, namely (i) the U6 snRNA ACAGAG-box region, (ii) portions of the U6 intramolecular stem-loop (U6-ISL) including a nucleotide implicated in the first catalytic step (U74), and (iii) the region of U2 that interacts with the branch point. These data constrain the relative orientation of these structural elements with respect to U(+10) in the activated spliceosome. Upon conversion of the activated spliceosome to complex C, the accessibility of U6-ISL to hydroxyl-radical cleavage is altered, suggesting rearrangements after the first catalytic step.
Project description:pre-mRNA splicing is a critical feature of eukaryotic gene expression. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that the conserved U6 snRNA m6A methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of METT-10 in C. elegans and METTL16 in humans primarily leads to alternative splicing at 5' splice sites with an adenosine at +4 position. In addition, METT-10 is required for splicing of weak 3' cis- and trans-splice sites. We identified a significant overlap between METT-10 and the conserved splicing factor SNRNP27K in regulating 5' splice sites with +4A. Finally, we show that editing endogenous 5' splice site +4A positions to +4U restores splicing to wild-type positions in a mett-10 mutant background, supporting a direct role for U6 snRNA m6A modification in 5' splice site recognition. We conclude that the U6 snRNA m6A modification is important for accurate and efficient pre-mRNA splicing.
Project description:The N6-methyladenosine modification at position 43 (m6A43) of U6 snRNA is catalyzed by METTL16, and is important for the 5'-splice site recognition by U6 snRNA during pre-mRNA splicing. Human METTL16 consists of the N-terminal methyltransferase domain (MTD) and the C-terminal vertebrate conserved region (VCR). While the MTD has an intrinsic property to recognize a specific sequence in the distinct structural context of RNA, the VCR functions have remained uncharacterized. Here, we present structural and functional analyses of the human METTL16 VCR. The VCR increases the affinity of METTL16 toward U6 snRNA, and the conserved basic region in VCR is important for the METTL16-U6 snRNA interaction. The VCR structure is topologically homologous to the C-terminal RNA binding domain, KA1, in U6 snRNA-specific terminal uridylyl transferase 1 (TUT1). A chimera of the N-terminal MTD of METTL16 and the C-terminal KA1 of TUT1 methylated U6 snRNA more efficiently than the MTD, indicating the functional conservation of the VCR and KA1 for U6 snRNA biogenesis. The VCR interacts with the internal stem-loop (ISL) within U6 snRNA, and this interaction would induce the conformational rearrangement of the A43-containing region of U6 snRNA, thereby modifying the RNA structure to become suitable for productive catalysis by the MTD. Therefore, the MTD and VCR in METTL16 cooperatively facilitate the m6A43 U6 snRNA modification.
Project description:The U2/U6 snRNA complex is a conserved and essential component of the active spliceosome that interacts with the pre-mRNA substrate and essential protein splicing factors to promote splicing catalysis. Here we have elucidated the solution structure of a 111-nucleotide U2/U6 complex using an approach that integrates SAXS, NMR, and molecular modeling. The U2/U6 structure contains a three-helix junction that forms an extended "Y" shape. The U6 internal stem-loop (ISL) forms a continuous stack with U2/U6 Helices Ib, Ia, and III. The coaxial stacking of Helix Ib on the U6 ISL is a configuration that is similar to the Domain V structure in group II introns. Interestingly, essential features of the complex--including the U80 metal binding site, AGC triad, and pre-mRNA recognition sites--localize to one face of the molecule. This observation suggests that the U2/U6 structure is well-suited for orienting substrate and cofactors during splicing catalysis.
Project description:The terminal uridylyltransferase, TUT1, builds or repairs the 3'-oligo-uridylylated tail of U6 snRNA. The 3'-oligo-uridylylated tail is the Lsm-binding site for U4/U6 di-snRNP formation and U6 snRNA recycling for pre-mRNA splicing. Here, we report crystallographic and biochemical analyses of human TUT1, which revealed the mechanisms for the specific uridylylation of the 3'-end of U6 snRNA by TUT1. The O2 and O4 atoms of the UTP base form hydrogen bonds with the conserved His and Asn in the catalytic pocket, respectively, and TUT1 preferentially incorporates UMP onto the 3'-end of RNAs. TUT1 recognizes the entire U6 snRNA molecule by its catalytic domains, N-terminal RNA-recognition motifs and a previously unidentified C-terminal RNA-binding domain. Each domain recognizes specific regions within U6 snRNA, and the recognition is coupled with the domain movements and U6 snRNA structural changes. Hence, TUT1 functions as the U6 snRNA-specific terminal uridylyltransferase required for pre-mRNA splicing.